概率论与数理统计 知识点总复习

概率论与数理统计 知识点总复习

ID:11608913

大小:814.00 KB

页数:20页

时间:2018-07-12

概率论与数理统计 知识点总复习_第1页
概率论与数理统计 知识点总复习_第2页
概率论与数理统计 知识点总复习_第3页
概率论与数理统计 知识点总复习_第4页
概率论与数理统计 知识点总复习_第5页
资源描述:

《概率论与数理统计 知识点总复习》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、随机事件和概率第一节基本概念1、排列组合初步(1)排列组合公式从m个人中挑出n个人进行排列的可能数。从m个人中挑出n个人进行组合的可能数。(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。(4)一些常见排列①特殊排列相邻彼此隔开顺序一定和不可分辨②重复排列和非重复排列(有序)③对立事件④顺序问

2、题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(2)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:AB,或者A+B。属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。A、B同时发生:AB,或

3、者AB。AB=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。②运算:结合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:,3、概率的定义和性质(1)概率的公理化定义20设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:1°0≤P(A)≤1,2°P(Ω)=13°对于两两互不相容的事件,,…有常称为可列(完全)可加性。则称P

4、(A)为事件的概率。(2)古典概型(等可能概型)1°,2°。设任一事件,它是由组成的,则有P(A)==4、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式P(A-B)=P(A)-P(AB)当BA时,P(A-B)=P(A)-P(B)当A=Ω时,P()=1-P(B)(3)条件概率和乘法公式定义设A、B是两个事件,且P(A)>0,则称为事件A发生条件下,事件B发生的条件概率,记为。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如P(Ω/B)=1

5、P(/A)=1-P(B/A)乘法公式:更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有…………。(4)全概公式设事件满足1°两两互不相容,,2°,则有。此公式即为全概率公式。(5)贝叶斯公式设事件,,…,及满足1°,,…,两两互不相容,>0,1,2,…,,2°,,则,i=1,2,…n。20此公式即为贝叶斯公式。,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。如果我们把当作观察的“结果”,而,,…,理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。5、事件的独立性和伯努利试验(1)两个事件的独

6、立性设事件、满足,则称事件、是相互独立的(这个性质不是想当然成立的)。若事件、相互独立,且,则有所以这与我们所理解的独立性是一致的。若事件、相互独立,则可得到与、与、与也都相互独立。(证明)由定义,我们可知必然事件和不可能事件Ø与任何事件都相互独立。(证明)同时,Ø与任何事件都互斥。(2)多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。对于n个事件类似。两两互斥→互相互斥。两两独立→互相独立?

7、(3)伯努利试验定义我们作了次试验,且满足u每次试验只有两种可能结果,发生或不发生;u次试验是重复进行的,即发生的概率每次均一样;u每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。这种试验称为伯努利概型,或称为重伯努利试验。用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,,。随机变量及其分布第一节基本概念在许多试验中,观察的对象常常是一个随同取值的量。例如掷一颗骰子出现的点数,它本身就是一个数值,因此P(A)这个函数可以看作是普通函数(定义域和值域都是数字,数字到数字)。但是观察硬币出现正面还是反面,就不能简单理解

8、为普通函数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。