欢迎来到天天文库
浏览记录
ID:11577924
大小:36.00 KB
页数:6页
时间:2018-07-12
《如何学好初中数学》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、西藏大学本科生毕业论文题目:如何学好初中数学院(部)理学院专业年级07级中教姓名索朗群培学号0654220011308148指导教师索朗次仁职称中二二○○九年七月五日如何学好初中数学摘要:某些学生丧失了学习数学的兴趣而导致数学成绩下滑.本篇论文中,作者针对这些学生,建立和谐的师生关系,重视教学艺术的研究等方法来培养学习数学的兴趣,增强学好数学的信心.要学好初中数学,除了数学的定义、法则、性质、公式、公理、定理等一定要记熟和讲“方法”联系“思想”,以“思想”指导“方法”,两者相得益彰外勤奋刻苦的学习精神,认真仔细的学习态度,培养
2、良好的学习习惯也是学好数学的关键。在课堂上,不仅是学习新知识,还要潜移默化地学习老师解决问题的思维方式,面对一个问题,最后是提前思考,由“要我学”转变为“我要学”,培养学习的主动性,克服被动学习的局面。真正掌握数学学习的要领。关键词:定义、性质、公式、思想、方法1、数学的定义、法则、性质、公式、公理、定理等一定要记熟1、1.《学数学新课程标准》对初中数学中的基础知识作这样的描述:“初中数学中的基础知识包括初中代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。”1、2数学的定义、法则、性
3、质、公式、公理、定理等一定要记熟,要能背诵,朗朗上口。我们常说要在理解的基础上去记忆。但有些基础知识,如定义,是没有什么道理好讲的。如一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1,未知数的系数不能为0的方程叫做一元一次方程。在这个定义中,为什么只含有一个未知数而不是两个、三个,为什么未知数的最高次数是1而不是2或者3,为什么未知数的系数不能为0等,这些问题是没有什么价值的,或者说,定义只不过是对某种事物或现象的一种规定的或固有的含义。而有些基础知识,如法则、公式、定理等,不但要知其然,还要知其所以然。如平行线
4、的性质:两直线平行,同位角相等,内错角相等,同旁内角互补等,不但要记住,还要能够运用所学知识说明平行的两直线为什么有这样的性质。这就是我们说的在理解的基础上去记忆。在学习过程中,难免有一些暂时不理解的基础知识,在这种情况下,即使死记硬背也要记住,记住后,在后绪的学习过程中再去逐步理解。另外,一些重要的数学方法,数学思想也是需要记住的。只有这样,你在解数学题的过程中才能得心应手,从而体验到数学的美学价值,培养起学好数学的信心。 二、讲“方法”联系“思想”,以“思想”指导“方法”,两者相得益彰。 所谓数学思想,就是对数学知识和
5、方法的本质认识,是对数学规律的理性认识,是属于数学观念一类的东西,比较抽象。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映,它是实施数学思想的手段。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。 在初中数学的学习中,要求了解的数学思想有:方程函数的思想、数形结合的思想、转化
6、的思想、分类讨论的思想、隐含条件的思想、整体代换的思想、类比的思想等。要求“了解”的方法有:分类法、类比法、反证法;要求“理解”或“会运用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法、特值法等。其实思想和方法是不能截然分开的,初中数学中用到的各种方法都体现着一定的思想,而数学思想又是对方法的理性认识。因此,通过对数学方法的理解和应用以达到对数学思想的了解,是使思想与方法得到交融的有效方法。 在数学学习的过程中,一定要全面渗透数学思想与方法,学习了一个知识点或做了一道题,要认真思考一下,用到了哪些数学思想与方
7、法。数学思想与方法虽然说法各异,但毕竟是有限的,正确运用数学思想与方法学习数学或解题,有利于对知识进行比较归类,只有这样,才能把所学知识学得系统,学得灵活,才能把所学的知识真正纳入到你的知识结构中去,变成自己的财富。 另外,由于数学思想的抽象性,数学方法虽然比较具体,但方法本身就是科学,是一种更为重要的知识,还是有一定难度的,所以,在刚接触时,难免理不出头绪,这是一种正常现象,不用产生惧怕心理。特别是数学思想,是一个逐渐渗透的过程,要在循序渐进的学习过程中结合具体的数学知识或题目去理解。 如在学习有理数、三角形、四边形、圆
8、周角和弦切角定理的证明、一元二次方程求根公式的推导等知识时,会涉及到分类讨论的思想。分类讨论思想的原则是:标准统一、不重不漏。它的优点是具有明显的逻辑性特点,能很好地训练一个人思维的条理性和概括性。 方程的思想实现了由小学的算术法向初中代数法的转化,这是数学思想的一个实质性
此文档下载收益归作者所有