应用于破碎机故障诊断系统中的信息融合技术_证据理论

应用于破碎机故障诊断系统中的信息融合技术_证据理论

ID:11555418

大小:29.50 KB

页数:9页

时间:2018-07-12

应用于破碎机故障诊断系统中的信息融合技术_证据理论_第1页
应用于破碎机故障诊断系统中的信息融合技术_证据理论_第2页
应用于破碎机故障诊断系统中的信息融合技术_证据理论_第3页
应用于破碎机故障诊断系统中的信息融合技术_证据理论_第4页
应用于破碎机故障诊断系统中的信息融合技术_证据理论_第5页
资源描述:

《应用于破碎机故障诊断系统中的信息融合技术_证据理论》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、应用于破碎机故障诊断系统中的信息融合技术_证据理论论文摘要:本文以该设备故障诊断为研究对象在对国内外研究现状进行深入分析的基础上给出一种基于神经网络和D-S证据理论相结合的信息融合的故障诊断方法并进行实际检验。以信息融合的基本思路,将多子神经网络和D-S应用于破碎机故障诊断系统中的信息融合技术_证据理论论文摘要:本文以该设备故障诊断为研究对象在对国内外研究现状进行深入分析的基础上给出一种基于神经网络和D-S证据理论相结合的信息融合的故障诊断方法并进行实际检验。以信息融合的基本思路,将多子神经网络和D-S应用于破碎机故

2、障诊断系统中的信息融合技术_证据理论论文摘要:本文以该设备故障诊断为研究对象在对国内外研究现状进行深入分析的基础上给出一种基于神经网络和D-S证据理论相结合的信息融合的故障诊断方法并进行实际检验。以信息融合的基本思路,将多子神经网络和D-S应用于破碎机故障诊断系统中的信息融合技术_证据理论论文摘要:本文以该设备故障诊断为研究对象在对国内外研究现状进行深入分析的基础上给出一种基于神经网络和D-S证据理论相结合的信息融合的故障诊断方法并进行实际检验。以信息融合的基本思路,将多子神经网络和D-S应用于破碎机故障诊断系统中的

3、信息融合技术_证据理论论文摘要:本文以该设备故障诊断为研究对象在对国内外研究现状进行深入分析的基础上给出一种基于神经网络和D-S证据理论相结合的信息融合的故障诊断方法并进行实际检验。以信息融合的基本思路,将多子神经网络和D-S证据理论综合起来设计出一套综合诊断方法,将两种方法取长补短相结合应用于故障诊断中,取得了较好的诊断效果。论文关键词:故障诊断,信息融合,神经网络,证据理论  0引言  现代工业生产设备趋向大型化、连续化、高速化和自动化,功能越来越多、结构越来越复杂,但因此设备故障停工造成的损失大大增加。保证生产

4、正常进行的关键是使各种重要的大型设备正常运转。如果在设备出了问题后维修,停产不仅带来经济上的巨大损失,而且设备带病工作有可能引起严重损害。目前对设备进行定期检修,如检修间隔长,有可能在两次检修之间设备发生故障。设备发生故障时,将产生机械的、电气的、物理的、化学的变化,并随着故障程度的增加而显著,可以通过各种检测手段来发现这些异常现象来分析设备的故障状况。但是采用单一检测手段都因各种不确定因素的影响,采用单一检测手段诊断设备故障的结论往往不准确。  针对上述问题,本系统将通过对设备进行在线动态连续监测分析,随时了解设备

5、的状态,给出故障报警信号。要实现设备故障诊断的准确性,最有效的方法就是采用多种检测手段来进行综合诊断。  1故障诊断技术  故障诊断是指在一定工作环境下查明导致系统某种功能失调的原因或性质,判断劣化状态发生的部位或部件,以及预测劣化状态的发展趋势等。故障诊断的过程有三个主要步骤:  1)检测设备状态的特征信号;  2)从所有检测到的特征信号中提取征兆;  3)根据征兆和其它诊断信息来识别设备的状态,从而完成故障诊断。  2神经网络技术的信息融合故障诊断方法  神经网络是一个具有高度非线性的超大规模连续时间动力系统,主

6、要特征为连续时间非线性动力学、网络的全局作用、大规模并行分布处理和联想学习能力。其在故障诊断领域的应用主要集中于三个方面:一是从模式识别角度应用神经网络作为分类器进行故障诊断;二是从预测角度应用神经网络作为动态预测模型进行故障预测;三是从知识处理角度建立基于神经网络的诊断专家系统。  2.1神经网络的特点以及用于故障诊断的原因  神经网络故障诊断问题可以看成模式识别。通过对一系列过程参量进行测量,然后用神经网络从测量空间映射到故障空间,实现故障诊断。应用于故障诊断的方法多种多样,神经网络之所以适合于故障诊断,有以下三

7、个主要原因:  1)训练过的神经网络能存储有关过程的知识,能直接从定量的、历史故障信息中学习。可以根据对象的正常历史数据训练网络,然后将此信息与当前测量数据进行比较,以确定故障。  2)神经网络具有滤出噪声及在有噪声情况下得出正确结论的能力,可以训练人工神经网络来识别故障信息,使其能在噪声环境中有效的工作,这种滤出噪声的能力使得神经网络适合在线故障检测和诊断。  3)神经网络具有分辨原因及故障类型的能力。  BP网络在诸如模式识别、系统辨识、图像处理、语言理解、函数拟合等一系列实际问题中得到了极为广泛的应用。  2.

8、2神经网络的故障诊断过程  模糊神经网络与传统多层感知器的主要区别在于其输入和输出均表示为模糊隶属度,通过隶属度函数的适当选择,该网络既可以处理数字形式输入又能适应语义形式输入,同时输出也不再是单一的分类结果而是各类的隶属度,这样就更好地模拟了人脑思维的模糊性。  3证据理论的信息融合故障诊断方法  3.1D-S证据理论概述  在诊断领域,由于

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。