“介质阻挡放电”功率测量

“介质阻挡放电”功率测量

ID:11380854

大小:73.50 KB

页数:5页

时间:2018-07-11

“介质阻挡放电”功率测量_第1页
“介质阻挡放电”功率测量_第2页
“介质阻挡放电”功率测量_第3页
“介质阻挡放电”功率测量_第4页
“介质阻挡放电”功率测量_第5页
资源描述:

《“介质阻挡放电”功率测量》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、主要有三种:功率表法,电压电流积分法和李萨如图形法1)功率表法:一般接在升压变压器的低电压侧,测量结果包括了变压器的损耗,而且灵敏度不够,不能反应电流的脉冲特征。虽然又很多缺点,但实现简单,因此仍是目前臭氧发生器领域功率测试的国家标准方法。2)电压电流积分法:这种方法似乎没有什么问题,但是因为丝状放电中有大量的电流窄脉冲,测量准确度受到影响。同时,该方法测量结果包括了介质电容和气隙电容上的无功功率,很难从测量结果中剔除。3)李萨如图形法:这种方法上世纪70年代才有人采用,因为引入了测量电容将电流脉冲

2、平滑化,所以一般说来准确度要高一些,同时测量结果中不包括介质电容的影响。虽然如此,该方法也很有局限,(最大的局限就是一般只能应用到交流电压下的介质阻挡放电)介质阻挡放电就是交流电。对于准确测量介质阻挡放电的功率,尤其是有功功率,目前尚无比较完美的方法。辉光放电向丝状放电转化的原因一般情况下,介质阻挡辉光放电都是不能稳定的,经过一段时间后会转化为丝状放电。辉光放电是一种很均匀的放电形式,但是一些干扰因素会影响局部区域的均匀性,从而触发辉光放电向丝状放电转化。这些干扰因素包括:气体发热、等离子化学反应、

3、电极表面效应、放电区域边缘处放电不均等。电子在介质表面扩展是导致向丝状放电转化的直接原因。假设某位置受到干扰导致放电不均,这必将引起该位置所对应的介质表面电荷沉积不均(假设沉积得多一些),于是,下半个周期该位置处就会提前放电。由于电子在介质表面的扩展,该位置周围气隙上的电压会随着该位置提前放电而迅速降低,这就抑制了该位置周围区域的放电,这种作用(促进该位置处的放电、抑制其周围的放电)是一种正反馈过程,最终转化为丝状放电。汤逊放电理论与流注放电理论简介(翻译自B.Elliason的综述文章)   间隙

4、击穿的机理有两种,一种是汤逊理论,另一种是流注理论。二者适用范围不同,一般nd较小时,气体击穿是汤逊放电;nd较大就是流注放电。   汤逊放电中,气体间隙击穿只能产生很少的空间电荷,雪崩和阴极二次电子发射形成反馈(二次电子发射主要由离子和紫外光子碰撞阴极引起),维持放电。阴极材料对放电过程影响很大,材料表面逸出功越小,二次电子发射就越容易。   大气压下的气体放电大多是流注放电。在流注放电情况下,第一次雪崩击穿过程中就会产生大量的空间电荷,这些空间电荷在传播路径上数量指数增长,它们形成的本征电场(自

5、感应电场)会在雪崩头部与外施电场叠加,从而加强了雪崩头部与阳极间的电场强度。流注放电的击穿机理有两种:1)正流注。由于很高的局部本征场作用,雪崩尾部的高能电子被加速,它们会快速离开(逸散电子)并引导放电通道向阳极发展。这些由逸散电子所产生的放电通道会导致流注以很快的速度传播,远远快于只考虑电子漂移速度的情况。一旦空间电荷到达阳极,由空间电荷形成的电场就会发生反转,进而形成高强度的电场波向阴极传播,电离路径上的原子和分子,仿佛一个向阴极扩展的电子波。这样在空间电荷通过间隙后,一个导电通道就形成了。中等

6、间隙距离下容易导致这样的正流注放电。2)负流注。雪崩发展过程中,一些激发的原子和分子会发射出紫外的光子,这些光子会产生两方面作用:一是碰撞阴极表面产生二次电子发射,增强雪崩的强度,促进放电通道的形成;二是导致雪崩头部与电极之间原子和分子的电离。Garllimberti把电离产生的电子称为种子电子,这些种子电子会导致新的次雪崩,次雪崩与主雪崩的结合会加速放电向阴极的扩展。这一过程反复进行,间接导致了空间电荷向阴极传播,形成负流注。这一理论用于解释负极性电晕放电中的流注传播比较有效。微放电对臭氧发生器性

7、能的影响介质阻挡放电最初用途就是生成臭氧,这方面的工业化应用已经有100多年历史了,尽管如此,臭氧生成效率迄今仍然不够高。介质阻挡放电中一般都是微放电形式,所谓微放电,就是大量的细微快脉冲放电,其产生位置具有随机性,放电时间为10ns量级,整体看来是均匀而散漫的放电,类似辉光放电。微放电的特性对臭氧发生器性能影响最为直接,而目前国外相关研究人员也正在从微放电入手,研究如何提高臭氧发生器的性能。概括的讲,微放电对臭氧生成主要有三方面影响:1) 氧气的分解效率决定于放电间隙的约化电场强度和电子携带的能量

8、比率。电子携带的能量比例越高效率越高,因为重粒子携带的能量都损失掉了。2) 氧原子结合成臭氧的效率取决于于微放电通道中氧原子的浓度,氧原子浓度太高会促进O+O+M=O2+M和O+O3=2O2两个反应,从而降低O3生成效率。3) 臭氧的合成与分解是气隙温度的函数,而温度很大程度上取决于间隙中放电的平均能量密度。所以,为了从微放电入手提高臭氧生成效率,上面红色部分必需综合的加以考量。低温等离子体的应用现状(随意总结,不全)低温等离子体应用在材料处理、食品和医疗器械消毒、空

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。