絮凝池的合理设计论文

絮凝池的合理设计论文

ID:11324126

大小:74.00 KB

页数:12页

时间:2018-07-11

絮凝池的合理设计论文_第1页
絮凝池的合理设计论文_第2页
絮凝池的合理设计论文_第3页
絮凝池的合理设计论文_第4页
絮凝池的合理设计论文_第5页
资源描述:

《絮凝池的合理设计论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、絮凝池的合理设计论文.freel的概念,也就是说Sm代表在一定的水流条件下,能形成最大粒径的原始颗粒数。丹保教授通过试验得出,在原水水质条件不变时,Sm是有效能量消耗率ε0(或速度梯度G)的函数。通过对絮凝过程中一些主要现象的分析,包括颗粒的碰撞,因碰撞产生的聚集、絮凝体尺寸的限制以及水流对絮凝体的剪切,我们得到了可用真实水样模拟水质特征以及用G值模拟水流特征这样两个关系。采用G值来模拟絮凝池的水流絮凝特征,至少在二方面是有用处的,一是可以把真实絮凝池的研究缩小到在实验室内进行,也就是只要维持实验条件的G值与真实池相同。其结果也应相同

2、。另一是可以用作不同絮凝形式的比较,也就是即使絮凝池的水流形态相差甚大,只要其过程的G值相同,(当然还应考虑不同絮凝池形式有效能量利用的差别)效果也应相同。假设和设想作为研究的方法可以是微观的,也可以是宏观的。大多理论研究都以微粒作为对象。由于实际的原水是由不同颗粒所组成,不仅粒径呈一定分布,而且其性质也各不相同。对于水流条件来说,同样存在一个断面内的速度梯度各不相同。可能在同一时刻同一断面上,既有颗粒的絮凝,又有颗粒的破碎。因此,采用微粒的分析方法,问题要复杂的多。甚至在很多情况下难以办到。微观现象的分析,可以帮助我们对问题的考虑(

3、如前节所作的那样),但试验还应以整个悬浊液在絮凝过程中的平均效果作代表。这样,我们就不必去分析诸如颗粒大小的组成分布,断面各点的速度梯度分布以及絮凝颗粒的沉速分布等等。而分别用平均粒径、平均速度梯度以及平均沉速来表示。对于絮凝效果的评价,一般可以采用颗粒粒径、颗粒沉速以及沉淀后浊度去除率等来表示。无论是颗粒粗径的加大,沉速的加快以及沉淀后浊度去除率的增加都能反映絮凝效果的提高。在理论研究方面,一般以粒径为指标的居多。许多理论公式都与粒径有关。对于后续处理的沉淀计算来说,采用沉速的概念较为有利。因为沉淀池设计希望提供反应后的沉速数据。然

4、而对于测定来说,采用浊度指标最为方便。实际上这三个指标都是相互关联的。沉淀后浊度去除率可以间接地表达悬浊液的平均沉速。为了探讨方便起见,我们在研究设想方案时,仍以平均沉速作为指标;而作为实验的手段,则以沉淀后浊度去除率为指标。此外,我们还作了一个假设,就是由不同方式获得相同絮凝效果的悬浊液,在其进一步作絮凝反应时,应获得同样的结果,例如采用G1值的速度梯度反应T1时间后,得到了悬浊液的平均沉速为V,而用另一G2值反应T2时间后也可得到平均沉速为V,我们就认为这二者效果相同,同时,尽管它们形成的条件各不相同,但在进一步絮凝时,二者应该获

5、得同等的絮凝条件。根据以上对絮凝过程以及基本假设的分析,我们就可以进而讨论絮凝池合理设计的设想方案。如果把单位体积中颗粒所占的比例用φ来表示,即:φ=N(π/6)d3(4)则参照式(1)及式(3),并假定颗粒的每一次碰撞均产生聚集,那么颗粒浓度的时间变化率就应为:dN/dt=-KsN(5)式中:Ks取决于G和φ,即Ks=kGφ。将式(5)积分,可得:N=N0e-Kst(6)式中:N为絮凝时间为t时的颗粒总浓度;No为絮凝开始时(t=0)的颗粒总浓度。假如絮凝过程中密度保持不变,即φ固定,则上式可换算成粒径的变化关系。即:d=d0e(K

6、st/3)式中:d及do分别为时间t及t=0时的颗粒粒径。也就是说。如果颗粒的每次碰撞均属有效,则其粒径的增长(或相应沉速的增长)理论上应如图1所示的形式。粒径(或沉速)随时间呈指数关系增加。其增长的速率取决于ks值。即Ks越大增长速率越快。ks与水流的速度梯度及原水颗粒体积比成正比。因此当G值增加。或者颗粒浓度增加时,粒径(或沉速)的增长就迅速。图1所示为理论曲线,然而,根据一般搅拌试验的结果,所得图形与图1有很大出入,大致得到象图2实线所示的曲线。也就是说,在维持G值不变情况下,沉速增长的速率不一定是随时间增加而加速。在开始时或开

7、始以后较短时间,沉速增长形式与理论曲线大致相似。但以后其增长率不仅不是逐步增加,相反出现逐步减小,最后趋向于某一极值Vmax。我们不妨称Vmax为某一G值时的极限沉速。例如,在作一般反应的搅拌试验时,最初5~10分钟效果增长较明显。然而超过10分钟以后其反应效果一般很少有明显增加。如果不改变搅拌速度,那么即使搅拌20分钟或30分钟,其结果往往不会有什么变化。产生理论曲线与试验曲线不一致的原因,很容易得到介释。理论曲线假定颗粒的每一次碰撞都产生聚集,实际上颗粒碰撞时不仅不一定聚集,而且还可能被破碎。图2中阴影部分实际上代表了碰撞中的无效

8、和破碎部分。由于V与絮凝结果的沉速相比是微小的,故一般可略而不计。但是图2的试验曲线是用同一水质、同一G值试验的结果。如果改变G值,情况就会不同。实际上在进行搅拌试验时,用肉眼也可发现。在经一定时间搅拌后,停止浆板的转动

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。