欢迎来到天天文库
浏览记录
ID:11299140
大小:132.62 KB
页数:13页
时间:2018-07-11
《小学奥数知识点.06.数学规律》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、(六)数学规律1.数的整除性规律 【能被2或5整除的数的特征】(见小学数学课本,此处略) 【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。 例如,1248621各位上的数字之和是 1+2+4+8+6+2+1=24 3|24,则3|1248621。 又如,372681各位上的数字之和是 3+7+2+6+8+1=27 9|27,则9|372681。 【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这
2、个数便能被4或25整除。 例如,173824的末两位数为24,4|24,则4|173824。 43586775的末两位数为75,25|75,则25| 43586775。【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。 例如,32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。 3569824的末三位数为824,8|824,则8|3569824。 214813750的末三位数为750,125
3、|750,则125|214813750。13【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。 例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即 7|448,则7|75523。 又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即
4、 13|221,则13|1095874。 再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即 11|99,则11|868967。 此外,能被11整除的数的特征,还可以这样叙述: 一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。 例如,4239235的奇数位上的数字之和为 4+3+2+5=14, 偶数位上数字之和为2+9+3=14, 二者之差为14-14=0,0÷1
5、1=0, 即11|0,则11|4239235。2.和差积商的变化规律 【和的变化规律】13 (1)如果一个加数增加(或减少)一个数,另一个加数不变,那么它们的和也增加(或减少)同一个数。用字母表达就是 如果a+b=c,那么(a+d)+b=c+d; (a-d)+b=c-d。 (2)如果一个加数增加一个数,另一个加数减少同一个数,那么它们的和不变。用字母表达就是 如果a+b=c,那么(a+d)+(b-d)=c。 【差的变化规律】 (1)如果被减数增加(或减少)一个数,减数不变,那么,它们的
6、差也增加(或减少)同一个数。用字母表达,就是 如果a-b=c,那么(a+d)-b=c+d, (a-d)-b=c-d。 (a>d+b) (2)如果减数增加(或减少)一个数,被减数不变,那么它们的差反而减少(或增加)同一个数。用字母表达,就是 如果a-b=c,那么a-(b+d)=c-d(a>b+d), a-(b-d)=c+d。 (3)如果被减数和减数都增加(或都减少)同一个数,那么,它们的差不变。用字母表达,就是 如果a-b=c,那么(a+d)-(b+d)=c, (a-d)-(b-d)=c
7、。 【积的变化规律】13 (1)如果一个因数扩大(或缩小)若干倍,另一个因数不变,那么,它们的积也扩大(或缩小)同样的倍数。用字母表达,就是 如果a×b=c,那么(a×n)×b=c×n, (a÷n)×b=c÷n。 (2)如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。用字母表达,就是 如果a×b=c,那么(a×n)×(b÷n)=c, 或(a÷n)×(b×n)=c。 【商或余数的变化规律】 (1)如果被除数扩大(或缩小)若干倍,除数不变,那么它们的商也扩大(或缩小)同
8、样的倍数。用字母表达,就是 如果a÷b=q,那么(a×n)÷b=q×n, (a÷n)÷b=q÷n。 (2)如果除数扩大(或缩小)若干倍,被除数不变,那么它们的商反而缩小(或扩大)同样的倍数。用字母表达,就是 如果a÷b=q,那么a÷(b×n)=q÷n, a÷(b÷n)=q×n。 (3)被除数和除数都扩大(或都缩小)同样的倍数,那么它们的商不变。用字母表达,就是 如果a÷b=q,那么(a×n)÷(b×n)=q, (a÷n)÷(
此文档下载收益归作者所有