拉曼光谱技术综述

拉曼光谱技术综述

ID:11274812

大小:290.25 KB

页数:11页

时间:2018-07-11

拉曼光谱技术综述_第1页
拉曼光谱技术综述_第2页
拉曼光谱技术综述_第3页
拉曼光谱技术综述_第4页
拉曼光谱技术综述_第5页
资源描述:

《拉曼光谱技术综述》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、拉曼光谱技术综述摘要:本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。关键字:光谱分析、拉曼散射、激光、光子1、拉曼光谱的发展简史  印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的

2、现象,即由光学声子引起的拉曼散射,称之谓并合散射。然而到1940年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太弱(约为入射光强的),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、

3、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。  70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rrinshow公司相继推出,拉曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notchfilter)来过滤掉激发光,使杂散光得到抑制,这样入射光的功率可以很低,灵敏度得到很大的提高。Dilo公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。2、拉曼光谱简介:拉曼光谱(Ramanspectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射

4、效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。3、拉曼光谱原理:3.1、瑞利散射与拉曼散射  当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的10-6~10-10。拉曼散射的产生原因是光子与分子之间发生了能量交换改变了光子的能量。3.2、拉曼散射的产生  光子和样品分子之间的作用可以从能级之间的跃迁来分析。样品

5、分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞利散射。如果样品分子回到电子能级基态中的较高振动能级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为Stokes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级基态的最低振动能级,而是处

6、于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为antiStokes线。Stokes线和anti-Stokes线位于瑞利谱线两侧,间距相等。Stokes线和anti-Stokes线统称为拉曼谱线。由于振动能级间距还是比较大的,因此,根据波尔兹曼定律,在室温下,分子绝大多数处于振动能级基态,所以Stokes线的强度远远强于anti-Stokes线。拉曼光谱仪一般记录的都只是Stokes线。3.3、拉曼散射光谱的特征1.拉曼散射谱线的波数虽然随入射光的波

7、数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;2.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。3.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。实验做出的谱图(以波长为单位)标准的谱图(以波数为单位)3.4、通过的结构分析解释光谱:分子为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。