基于dsp的数字频率计设计

基于dsp的数字频率计设计

ID:11256187

大小:2.54 MB

页数:12页

时间:2018-07-11

基于dsp的数字频率计设计_第1页
基于dsp的数字频率计设计_第2页
基于dsp的数字频率计设计_第3页
基于dsp的数字频率计设计_第4页
基于dsp的数字频率计设计_第5页
资源描述:

《基于dsp的数字频率计设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、题目:基于DSP的简易数字式频率计组员:孙雪峰(20098154)王忆(20098153)李郎(20098148)李飞(20098134)马欣雨(20099052)一、引言随着现代科学技术的发展,频率及时间的测量以及它们的控制技术在科学技术各领域,特别是在计量学、电子技术、信息科学、通信、天文和电子仪器等领域占有越来越重要的地位。从国际发展的趋势上看,频率标准的准确度和稳定度提高得非常快,几乎是每隔6至8年就提高一个数量级。本系统采用DSP的数值控制方式是目前设计控制系统的发展趋势,这种基于DSP的控制系统能够用软件实现复杂的算法,而不需要复杂的模拟电路,具有软硬件模块化、测量功能可

2、重组/可选择的特点。该系统采用TI公司推出的150MHz高速处理能力的高精度定点数字信号控制器TMS320F2812芯片,其丰富的片内资源可以大大简化硬件电路的设计,有利于提高系统的可靠性,其高效的32位CPU内核、支持浮点运算等特点,为提高系统的测量精度奠定了基础。该系统具有精度高、实时性好、使用方便、测量迅速,以及便于实现测量过程自动化等优点。随着微电子技术和计算机技术的飞速发展,各种电子测量仪器在原理、功能、精度及自动化水平等方面都发生了巨大的变化,特别是DSP技术诞生以后,电子测量技术更是迈进了一个全新的时代。近年来,DSP逐渐成为各种电子器件的基础器件,逐渐成为21世纪最具

3、发展潜力的朝阳行业,甚至被誉为信息化数字化时代革命旗手。在电子测量技术中,频率是最基本的参数之一,它与许多电参量和非电量的测量都有着十分密切的关系。例如,许多传感器就是将一些非电量转换成频率来进行测量的,因此频率的测量就显得更为重要。数字频率计是用数字来显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。数字频率计广泛采用了高速集成电路和大规模集成电路,使得仪器的体积更小、耗电更少、精度和可靠性更高。而传统的频率计测量误差较大,范围也较窄,因此逐渐被新型的数字频率计所代替。基于DSP的等精度频率计以其测量准确、精度高、方便、价格便宜等优势将得到广泛的应用。我们设

4、计的简易数字频率计在未采用任何门控器件控制的情况下,在很宽的范围内实现了等精度频率测量,0.5Hz~10MHz的范围内测量方波的最大相对误差小于2e-6,测量正弦波的最大相对误差小于3.5e-5;结果通过RS232通讯显示在计算机上,可以很方便地监测数据。二、频率测量的原理分析频率的测量可以直接测量,也可以进行间接测量周期来达到测量频率的目的。其相应的原理框图如下所示。输入信号的预处理:由于输入的信号可以是正弦波,三角波。而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路。在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。在整形之前由于不清楚被测信号的强

5、弱的情况。所以在通过整形之前通过放大衰减处理。当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。周期测量:测量周期的原

6、理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。方波信号中的脉冲宽度恰好为被测信号的1个周期。将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。计数器累计的结果可以换算出被测信号的周期。用时间Tx来表示:Tx=NTs式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期时基电路:时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态时间分别为T1=0.7(Ra+Rb)CT2=0.7RbC重复周期为T=T1+T2。由于被测信号范围为1Hz~1MHz,如果只采用一种闸门脉

7、冲信号,则只能是10s脉冲宽度的闸门信号,若被测信号为较高频率,计数电路的位数要很多,而且测量时间过长会给用户带来不便,所以可将频率范围设为几档:1Hz~999Hz档采用1s闸门脉宽;0.01kHz~9.99kHz档采用0.1s闸门脉宽;0.1kHz~99.9kHz档采用0.01s闸门脉宽。多谐振荡器经二级10分频电路后,可提取因档位变化所需的闸门时间1ms、0.1ms、0.01ms。闸门时间要求非常准确,它直接影响到测量精度,在要求高精度、高稳定度的场合

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。