_《数学奥林匹克专题讲座》第08讲 立体图形

_《数学奥林匹克专题讲座》第08讲 立体图形

ID:1123949

大小:334.50 KB

页数:14页

时间:2017-11-07

_《数学奥林匹克专题讲座》第08讲 立体图形_第1页
_《数学奥林匹克专题讲座》第08讲 立体图形_第2页
_《数学奥林匹克专题讲座》第08讲 立体图形_第3页
_《数学奥林匹克专题讲座》第08讲 立体图形_第4页
_《数学奥林匹克专题讲座》第08讲 立体图形_第5页
资源描述:

《_《数学奥林匹克专题讲座》第08讲 立体图形》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第8讲立体图形  空间形体的想象能力是小学生的一种重要的数学能力,而立体图形的学习对培养这种能力十分有效。我们虽然在课本上已经学习了一些简单的立体图形,如正方体、长方体、圆柱体、圆锥体,但有关立体图形的概念还需要深化,空间想象能力还需要提高。  将空间的位置关系转化成平面的位置关系来处理,是解决立体图形问题的一种常用思路。一、立体图形的表面积和体积计算  例1一个圆柱形的玻璃杯中盛有水,水面高2.5cm,玻璃杯内侧的底面积是72cm2,在这个杯中放进棱长6cm的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?  解:水的体积为72×2.5

2、=180(cm3),放入铁块后可以将水看做是底面积为72-6×6=32(cm2)的柱体,所以它的高为  180÷32=5(cm)。  例2下图表示一个正方体,它的棱长为4cm,在它的上下、前后、左右的正中位置各挖去一个棱长为1cm的正方体,问:此图的表面积是多少?  分析:正方体有6个面,而每个面中间有一个正方形的孔,在计算时要减去小正方形的面积。各面又挖去一个小正方体,这时要考虑两头小正方体是否接通,这与表面积有关系。由于大正方体的棱长为4cm,而小正方体的棱长为1cm,所以没有接通。每个小正方体孔共有5个面,在计算表面积时都要考虑。  解

3、:大正方体每个面的面积为  4×4-1×1=15(cm2),  6个面的面积和为15×6=90(cm2)。  小正方体的每个面的面积为  1×1=1(cm2),  5个面的面积和为  1×5=5(cm2),  6个小正方体孔的表面积之和为5×6=30(cm2),  因此所求的表面积为  90+30=120(cm2)。  想一想,当挖去的小正方体的棱长是2cm时,表面积是多少?请同学们把它计算出来。  例3正方体的每一条棱长是一个一位数,表面的每个正方形面积是一个两位数,整个表面积是一个三位数。而且若将正方形面积的两位数中两个数码调过来则恰好是

4、三位数的十位与个位上的数码。求这个正方体的体积。  解:根据“正方体的每一条棱长是一个一位数,表面的每个正方形面积是一个两位数,整个表面积是一个三位数”的条件,可知正方体的棱长有5,6,7,8,9这五种可能性。  根据“将正方形面积的两位数中两个数码调过来恰好是三位数的十位上与个位上的数码”,可知这个正方体的棱长是7。如下表:  因此这个正方体的体积是7×7×7=343。  例4一个长、宽和高分别为21cm,15cm和12cm的长方体,现从它的上面尽可能大地切下一个正方体,然后从剩余的部分再尽可能大地切下一个正方体,最后再从第二次剩余的部分尽

5、可能大地切下一个正方体,剩下的体积是多少立方厘米?  解:根据长方体的长、宽和高分别为21cm,15cm和12cm的条件,可知第一次切下尽可能大的正方体的棱长是12cm,其体积是  12×12×12=1728(cm3)。  这时剩余立体图形的底面形状如图1,其高是12cm。这样,第二次切下尽可能大的正方体的棱长是9cm,其体积是  9×9×9=729(cm3)。  这时剩余立体图形可分割为两部分:一部分的底面形状如图2,高是12cm;另一部分的底面形状如图3,高是3cm。这样,第三次切下尽可能大的正方体的棱长是6cm,其体积是  6×6×6=

6、216(cm3)。  因此,剩下的体积是  21×15×12-(123+93+63)=3780-2673=1107(cm3)。  说明:如果手头有一个泥塑的长方体和小刀,那么做出这道题并不难。但实际上,我们并没有依赖于具体的模型和工具,这就是想象力的作用。我们正是在原有感性经验的基础上,想象出切割后立体的形状,并通过它们各个侧面的形状和大小表示出来。因此,对一个立体图形,应该尽可能地想到它的原型。  例5下图是一个长27cm,宽8cm,高8cm的长方体。现将它分为4部分,然后将这4部分重新组拼,能重组为一个棱长为12cm的正方体。请问应该怎么

7、分?  解:重组成的正方体的棱长是12cm,而已知长方体的宽是8cm,所以要把宽增加4cm,为此可按下图1中的粗线分开,分开后重组成图2的形状;图2的高是8cm,也应增加4cm,为此可按图2中的虚线分开,分开后重组成图3的形状。图3就是所组成的棱长为12cm的正方体。  说明:这里有一个朴素的思想,就是设法把不足12cm的宽和高补成12cm的棱长,同时按照某种对称的方式分割。  在解关于立体图形的问题时,需要有较丰富的想象力,要能把平面图形在头脑中“立”起来,另外还应有一定的作图本领和看图能力。  例6雨哗哗地不停地下着,如在雨地里放一个如右

8、图那样的长方体的容器(单位:厘米),雨水将它下满要用1时。有下列(1)~(5)不同的容器,雨水下满各需多长时间?      解:根据题意知雨均匀地下,即单位面积内的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。