多元回归分析法的介绍及具体应用

多元回归分析法的介绍及具体应用

ID:10974415

大小:410.50 KB

页数:10页

时间:2018-07-09

多元回归分析法的介绍及具体应用_第1页
多元回归分析法的介绍及具体应用_第2页
多元回归分析法的介绍及具体应用_第3页
多元回归分析法的介绍及具体应用_第4页
多元回归分析法的介绍及具体应用_第5页
资源描述:

《多元回归分析法的介绍及具体应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、多元回归分析法的介绍及具体应用在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。这里主要讲的是多元线性回归分析法。1.多元线性回归的定义说到多元线性回归分析前,首先介绍下医院回归线性分析,一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活

2、中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定多因素之间相关关系的问题。研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一

3、数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。2.多元回归线性分析的运用具体地说,多元线性回归分析主要解决以下几方面的问题。(1)、确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它们之间合适的数学表达式;(2)、根据一个或几个变量的值,预测或控制另一个变量的取值,并且可以知道这种预测或控制能达到什么样的精确度;(3)、进行因素分析。例如在对于共同影响一个变量的许多变量(因素)之间,找出哪些是重要因素,哪些是次要因素,这些因素之间又有什么关系等等

4、。3.多元线性回归分析3.1多元线性回归分析的原理回归分析是一种处理变量的统计相关关系的一种数理统计方法。回归分析的基本思想是:虽然自变量和因变量之间没有严格的、确定性的函数关系,但可以设法找出最能代表它们之间关系的数学表达形式。3.2多元线性回归模型及其矩阵表示设是一个可观测的随机变量,它受到个非随机因索,,…,和随机因素的影响,若与,,…,有如下线性关系:(1.1)其中,,…,是个未知参数,是不可测的随机误差,且通常假定.我们称式(1.1)为多元线性回归模型.称为被解释变量(因变量),为解释变量(自变量).称(1.2)为理论回归方程.对于一个实际问题,要建立多元回归方

5、程,首先要估计出未知参数,,…,,为此我们要进行次独立观测,得到组样本数据,,他们满足式(1.1),即有(1.3)其中相互独立且都服从.式(1.3)又可表示成矩阵形式:(1.4)这里,,,,,为阶单位矩阵.阶矩阵称为资料矩阵或设计矩阵,并假设它是列满秩的,即.由模型(1.3)以及多元正态分布的性质可知,仍服从维正态分布,它的期望向量为,方差和协方差阵为,即.3.3参数的最小二乘估计及其表示1.参数的最小二乘估计与一元线性回归时的一样,多元线性回归方程中的未知参数仍然可用最小二乘法来估计,即我们选择使误差平方和达到最小.由于是关于的非负二次函数,因而必定存在最小值,利用微积

6、分的极值求法,得这里是的最小二乘估计.上述对求偏导,求得正规方程组的过程可用矩阵代数运算进行,得到正规方程组的矩阵表示:移项得              (1.5)称此方程组为正规方程组.依据假定,所以.故存在.解正规方程组(1.5)得                 (1.6)称为经验回归方程.2.误差方差的估计将自变量的各组观测值代入回归方程,可得因变量的估计量(拟合值)为向量称为残差向量,其中为阶对称幂等矩阵,为阶单位阵.称数为残差平方和(ErrorSumofSquares,简写为SSE).由于且,则从而为的一个无偏估计.3.4逐步回归当自变量的个数不多时,利用某种

7、准则,从所有可能的回归模型中寻找最优回归方程是可行的.但若自变量的数目较多时,求出所有的回归方程式很不容易的.为此,人们提出了一些较为简便实用的快速选择最优方程的方法,我们先根据“前进法”和“后退法”的思想,再详细介绍“逐步回归法”。1.前进法和后退法前进法:设所考虑的回归问题中,对因变量有影响的自变共有个,首先将这个自变量分别与建立个一元线性回归方程,并分别计算出这个一元回归方程的偏检验值,记为,若其中偏值最大者(为方便叙述起见,不妨设为)所对应的一元线性回归方程都不能通过显著性检验,则可以认为这些自变量不能与建立线性回归方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。