欢迎来到天天文库
浏览记录
ID:10954228
大小:43.50 KB
页数:8页
时间:2018-07-09
《丹东市2012年中考数学考试说明》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、丹东市2012年中考数学考试说明根据教育部《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》的要求,结合我市初中数学学科教学的实际情况,制定本考试说明。一、命题原则1.命题以《数学课程标准》规定的内容和程度要求为依据。2、命题有利于改进学生的学习和教师的教学,从而达到有效地促进学生和教师的发展的目的,同时有利于课程改革的有效实施和深入发展。3、命题注重对学生学习数学知识与技能的结果和过程的考查,注重对第三学段内容所反映出来的数学思想和数学方法的考查,注重对学生的数学思考能力和解决数学问题能力的考查,加强试题与社会实际和
2、学生生活实际的联系。4、命题面向全体学生,科学地评价学生通过课改阶段的数学学习所获得的知识和能力。二、考试范围考查内容以《数学课程标准》中的“内容标准”为依据,包括第三学段的全部内容。其中“课题学习”不作为独立命题内容。三、考试内容及要求数与代数试题将考查学生学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力.试题应注重让学生在
3、实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强考查方程、不等式、函数等内容的联系,应避免繁琐的运算.具体要求:1、数与式(1)有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).④理解有理数的运算律,并能运用运算律简化运算.⑤能运用有理数的运算解决简单的问题.⑥能对含
4、有较大数字的信息做出合理的解释和推断.(2)实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根.③了解无理数和实数的概念,知道实数与数轴上的点一一对应.④能用有理数估计一个无理数的大致范围.⑤了解近似数与有效数字的概念;在解决实际问题中,并按问题的要求对结果取近似值.⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化).(3)代数式①在现实情境中考察用字母表示数的意义.②
5、能分析简单问题的数量关系,并用代数式表示.③能解释一些简单代数式的实际背景或几何意义.④会求代数式的值;能根据特定的问题收集资料,找到所需要的公式,并会代入具体的值进行计算.(4)整式与分式 ①了解整数指数幂的意义和基本性质,会用科学记数法表示数.②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘).③会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单计算.④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解
6、(指数是正整数).⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.2、方程与不等式(1)方程与方程组①能够根据具体问题中的数量关系,列出方程.②会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)③理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程.④能根据具体问题的实际意义,检验结果是否合理.(2)不等式与不等式组①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质.②会解简单的一元一次不等式,并能在数轴上表示
7、出解集.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.③能够根据具体问题中的数量关系,列出一元一次不等式解决简单的问题.3、函数 (1)探索具体问题中的数量关系和变化规律(2)函数 ①通过简单实例,了解常量、变量的意义. ②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例. ③能结合图像对简单实际问题中的函数关系进行分析. ④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值. ⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系.⑥结合对函数关系的分析,尝试对变量的变化规
8、律进行初步预测.(3)一次函数 ①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式. ②会画一次函数的图像,根据一次函数的图像和解析表达式y=kx+b(k≠0)探索并理解其性质即k>0或k<0时,图像的
此文档下载收益归作者所有