改进的单级功率因数校正ac-dc变换器的拓扑综述

改进的单级功率因数校正ac-dc变换器的拓扑综述

ID:10538409

大小:55.00 KB

页数:5页

时间:2018-07-07

改进的单级功率因数校正ac-dc变换器的拓扑综述_第1页
改进的单级功率因数校正ac-dc变换器的拓扑综述_第2页
改进的单级功率因数校正ac-dc变换器的拓扑综述_第3页
改进的单级功率因数校正ac-dc变换器的拓扑综述_第4页
改进的单级功率因数校正ac-dc变换器的拓扑综述_第5页
资源描述:

《改进的单级功率因数校正ac-dc变换器的拓扑综述》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、改进的单级功率因数校正AC/DC变换器的拓扑综述

2、第1图1两级PFC方案图PFC级使输入电流跟随输入电压,使输入电流正弦化,提高功率因数,减少谐波含量。后接的DC/DC级实现输出电压的快速调节。由于采用两级结构,电路复杂,装置费用高,效率低。在小功率应用场合,两级PFC很不适用。因此,研究单级PFC及变换技术成为电力电子领域中的一项重要课题。单级PFC[2][3]将PFC级和DC/DC级组合在一起共用一个开关管和一套控制电路,同时实现对输入电流的整形和对输出电压的调节。它与两级方案不同的是,控制电路只调节输出电压,保证输出电压的稳定,在稳态时,占空比恒定,因此,要求PFC级的电

3、流能自动跟随输入电压,虽然,单级PFC变换器的输入电流不是正弦波,PF值不如两级方案高,但由于IEC100032只对电流谐波含量有要求,对PF值没有严格的要求,单级PFC变换器的输入电流谐波足以满足IEC100032。而且由于采用单级结构,电路简单,成本低,功率密度高。因此,单级PFC变换器在小功率场合得到了广泛的应用。本文主要对单级PFC的拓扑进行了分析,指出了存在的问题,介绍了几种改进的拓扑结构以解决这些问题。2单级隔离式BoostPFC电路的分析及存在的问题典型的单级隔离式BoostPFC电路如图2所示,该拓扑是由升压型PFC级和正激式DC/DC变换器组合而成。有

4、源开关S为共享开关,CB为缓冲电容。通过控制S的通断,电路同时实现对输入电流的整形和对输出电压的调节。500)this.style.ouseg(this)">图2典型的单级隔离式boostPFC电路众所周知,电流断续模式(DCM)的Boost变换器,在固定占空比下电流自动跟随输入电压,因此,PFC级工作在DCM下可以得到较高的功率因数。但是,输入和输出电感电流的峰值较高,增加了有源开关的电流应力和开关损耗;变换器的效率低;另外电路需要一个更大的EMI滤波器。如果要求减小开关器件的电压、电流应力,那就需要PFC级工作在电流连续模式(CCM)下,同时可以提高整个变换器的效率并减小E

5、MI。如在图2的a和b之间加一电感L1,可以使PFC级工作在CCM下。对于DC/DC变换器而言,为了提高变换器的效率,一般工作在CCM下,因此,占空比不随负载变化。当负载变轻时,输出功率减小,而PFC级输入功率同重载时一样,则充入储能电容的容量大于从储能电容抽走的能量,导致储能电容电压上升。为了保持输出电压一致,电压反馈环调节输出电压,使占空比减小,输入能量也相应减小,这个动态过程要到输入和输出功率平衡后才停止。负载减小带来的后果是直流总线电压明显上升,也就是电容电压明显上升,甚至达到上千伏。降低电容电压通常有两种方法:一种方法就是采用变频控制[4],可以使电容电压低于450V

6、,但是频率变化范围可能高达十倍,不利于磁性元件的优化设计;另一种就是采用变压器绕组实现负反馈。如果PFC级和DC/DC变换器都工作在CCM下,输出功率减小时,虽然占空比不变,但输入功率也会相应减小,抑制了储能电容电压的增加,它的效率是最高的,PF值有所降低,但是,很难找到一种拓扑完全工作在CCM下,设计上也相对复杂。串联单级PFC变换器的功率流图如图3所示,从图中可以看出,功率由输入传送到输出,经过了两次变换,效率低。500)this.style.ouseg(this)">图3串联单级PFC变换器的功率流图因此,单级PFC变换器的主要问题是,在使输入电流谐波满足IEC1000-

7、3-2和快速调节输出电压的同时,降低电容电压和提高效率;另外单级PFC变换器工作在硬开关状态时,开关器件承受的电压、电流应力高,因此,开关损耗很大。所以,人们提出了用变压器绕组实现负反馈,用软开关技术以及并联PFC等方法来降低电容电压,开关损耗和提高效率。下面介绍几种改进的拓扑以解决这些问题。3几种改进的拓扑介绍3.1单级并联PFC变换器[1][6][7]如前所述,无论是单级还是两级结构,串联式拓扑结构的效率都较低。为了提高变换器的效率,人们提出了并联PFC方法。其基本思路如下:假设PF=1,PFC输入功率与输出功率关系如图4所示,平均输入功率Pin的68%(P1)经过一次功率

8、变换到达负载,32%的剩余功率(P2)为输入与输出功率在半个电网周期内的差,经过两次功率变换到达负载[1]。图5为该方法的功率流图,P2经过两次功率变换到达输出,其余部分P1经过一次功率变换达到输出,从而提高了电路效率,并且高于两级和串联单级变换器。500)this.style.ouseg(this)">图4PFC输入功率与输出功率关系图500)this.style.ouseg(this)">图5单级并联PFC方法的功率流图典型的单级BoostPPFC变换器[1]如图6所示,电路在原带隔离变

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。