欢迎来到天天文库
浏览记录
ID:10471756
大小:55.00 KB
页数:5页
时间:2018-07-06
《联合分析方法对产品属性的应用研究 》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、联合分析方法对产品属性的应用研究摘要:在系统分析联合分析方法一般原理的基础上,通过对闪存盘市场分析,研究了如何运用联合分析方法分析消费者的购买行为,给出了该方法运用步骤、产品属性确定等问题,并通过对闪存盘市场的实际分析得出产品特征效用函数、产品效用值。 关键词:联合分析;产品属性;效用值 1联合分析的概念和基础 1.1联合分析的概念 联合分析是1964年由数理心理学家R.Luce和统计学家J.Tukey首先提出的。1971年由P.Green引入市场营销领域,成为描述消费者在多个属性的产品或服务中
2、做出决策的一种重要方法。1978年Carmone,Yen和Jam等人将联合衡量改为联合分析。从20纪80年代起,联合分析在许多领域中得到了广泛的认可和应用,90年代被应用得更加深入,涉及到许多研究领域。 联合分析是通过假定产品具有某些属性,对现实产品进行模拟,然后让消费者根据自己的偏好对这些虚拟产品进行评价,并采用数理统计方法将这些属性与属性水平的效用分离,从而对每一个属性以及属性水平的重要程度做出量化评价的方法。目前,该方法已被广泛应用到新产品概念识别、竞争力分析、价格策略、市场细分、广告研究等方面。 1.2联合
3、分析的基本思想 联合分析方法的基本思想是,通过提供给消费者以不同的属性水平组合形式的产品,并请消费者做出心理判断,按其意愿程度给产品组合打分、排序,然后采用数理分析方法对每个属性水平赋值,使评价结果与消费者的打分尽量保持一致,来分析研究消费者的选择行为。它可以用于评估消费者的偏好。如果产品特征是由一些属性构成,那么通过联合分析,就可以确定这些属性的哪种组合最受消费者欢迎。 2联合分析的一般步骤 联合分析的一般步骤如下图所示: 为了更好地说明联合分析方法的实施步骤,本文使用了一个闪存盘的例子来演绎
4、这个过程。在这个例子中,使用的是全轮廓联合分析方法。 2.1确定产品的属性和属性水平 联合分析首先要对产品或服务的属性进行识别。这些属性必须是显著影响用户购买的突出属性,既不能太多,也不能太少。属性过多会加重消费者负担,或者降低模型预测的精确性;属性过少,又会因模型中丢失了一些关键信息而严重降低模型的预测能力。属性的数目一般为3-6个。 确定了属性之后,还应该确定这些属性的水平,属性与属性水平的个数将决定联合分析过程中要进行估计的参数的个数,也将影响被调查者所要评价的产品轮廓个数。为了减轻被调查者的负担,同时又
5、要保证参数估计的精度,实验需要恰当地安排属性水平的个数。一个属性的各个水平的效用函数可能是连续性的,如价格中的49元、99元和129元;也可能是非连续性的,如品牌中的朗科、金士顿、清华紫光等等。对于连续性的数据来说,如果选取的属性水平过少,该研究的信度就值得怀疑。但如果属性水平过多,又会增加研究的成本和难度。进一步的研究还表明:各属性所含的水平数目应尽可能平衡,因为一个属性的水平数目增加时,即使起点保持不变,该属性的相对重要性也会提高。 2.2产品模拟 联合分析将产品的所有属性与属性水平通盘考虑,并采用正交设计的
6、方法将这些属性与属性水平进行组合,生成一系列虚拟产品。在实际应用中,通常每一种虚拟产品被分别描叙在一张卡片上。联合分析的产品模拟主要采用的分析方法是全轮廓法。 由全部属性的某个水平构成的一个组合叫做一个轮廓。每个轮廓分别用一张卡片表示,如下列组合产品(品牌:金士顿;价格:99元;容量:2GB),像这样的属性水平的轮廓组合就有3*3*3=27种,即消费者要对27种轮廓作评价。其实,并不需要对所有的组合产品进行评价,且在属性水平较多时实施难度也较大。在全轮廓法中,则采用正交设计等方法,以减少组合数,又能反映主效应。 2
7、.3数据收集 数据收集是联合分析的基础性工作。具体的方法有:全部呈现、正交设计或者是正交加随机呈现等-这要视属性及其水平多少而定。在大多数的联合分析任务中,产品轮廓是描述性的;但也可以将他们制作成图片或实物来呈现以提高实验的效度。 偏好的测量方法也决定了我们输入数据的形式,最主要的测量方法有:排序法(非定量的)和评分法(定量的)。在联合分析方法中,因变量是购买偏好或意愿,即由受访者根据自己的购买偏好或意愿来提供数据,当然,因变量也可是实际购买与选择。 在测试时,要求被访问者回答,选购某种属性水平组合的闪存盘的可
8、能等级,等级分为9等,最高等级为9分,最低等级为1分。 2.4计算属性的效用 从收集的信息中分离出消费者对每一属性以及属性水平的偏好值,这些偏好值也就是该属性的“效用”。计算属性的模型和方法有很多种,一般地,人们主要用最小二乘法回归模型、洛基回归(LOGIT)模型等方法。 最小二乘回归模型首
此文档下载收益归作者所有