高中数学选修2-1知识点

高中数学选修2-1知识点

ID:1038771

大小:1.20 MB

页数:10页

时间:2017-11-07

高中数学选修2-1知识点_第1页
高中数学选修2-1知识点_第2页
高中数学选修2-1知识点_第3页
高中数学选修2-1知识点_第4页
高中数学选修2-1知识点_第5页
资源描述:

《高中数学选修2-1知识点》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高二数学选修2-1第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若,则”,它的逆命题为“若,则”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题

2、为“若,则”,则它的否命题为“若,则”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。若原命题为“若,则”,则它的否命题为“若,则”。6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假四种命题的真假性之间的关系:两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若,则是的充分条件,是的必要条件.若,则是的充要条件(充分必要条件).8、用联结词“且”把命题和命题联结起来,得到

3、一个新命题,记作.当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题.用联结词“或”把命题和命题联结起来,得到一个新命题,记作.当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题.对一个命题全盘否定,得到一个新命题,记作.若是真命题,则必是假命题;若是假命题,则必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个,有成立”,记作“,”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称

4、命题.特称命题“存在中的一个,使成立”,记作“,”.10、全称命题:,,它的否定:,。全称命题的否定是特称命题。特称命题:,,它的否定:,。特称命题的否定是全称命题。考点:1、充要条件的判定2、命题之间的关系典型例题:★1.下面四个条件中,使成立的充分而不必要的条件是A.B.C.D.★2.已知命题P:n∈N,2n>1000,则P为A.n∈N,2n≤1000B.n∈N,2n>1000C.n∈N,2n≤1000D.n∈N,2n<1000★3.的A.充分不必要条件    B.必要不充分条件C.充分必要条件D.既不充分又不必要条件第二章:圆锥曲线知识点:11、求曲线的方程(点

5、的轨迹方程)的步骤:建、设、限、代、化①建立适当的直角坐标系;②设动点及其他的点;③找出满足限制条件的等式;④将点的坐标代入等式;⑤化简方程,并验证(查漏除杂)。12、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆。这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。13、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距,a最大对称性关于轴、轴对称,关于原点中心对称离心率准线方程14、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则。15、平面内与两个定点,的距离之差的绝对

6、值等于常数(小于)的点的轨迹称为双曲线。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距。16、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、、轴长虚轴的长实轴的长焦点、、焦距,c最大对称性关于轴、轴对称,关于原点中心对称离心率准线方程渐近线方程17、实轴和虚轴等长的双曲线称为等轴双曲线。18、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则。18、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段

7、,称为抛物线的“通径”,即.20、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则.21、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程离心率范围考点:1、圆锥曲线方程的求解2、直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★1.设双曲线的左准线与两条渐近线交于两点,左焦点在以为直径的圆内,则该双曲线的离心率的取值范围为A.B.C.D.,★★★2.设椭圆的左、右焦点分别为F1,F2。点满足(Ⅰ)求椭圆的离心率;(Ⅱ)设直线PF2与椭圆相交于A,B两点,若

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。