南京地铁1号线软土隧道施工论文

南京地铁1号线软土隧道施工论文

ID:10386568

大小:64.00 KB

页数:7页

时间:2018-07-06

南京地铁1号线软土隧道施工论文_第1页
南京地铁1号线软土隧道施工论文_第2页
南京地铁1号线软土隧道施工论文_第3页
南京地铁1号线软土隧道施工论文_第4页
南京地铁1号线软土隧道施工论文_第5页
资源描述:

《南京地铁1号线软土隧道施工论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、南京地铁1号线软土隧道施工论文【提要】:南京地铁1号线穿越地层条件非常复杂,既有低山丘陵的岩石层,也有古河道漫滩的含水土层,且局部区段位于河床之下,最浅覆土仅0.7m,地面建筑物林立。文章以南京地铁1号线为工程背景,介绍了粉质粘土地层的水下盾构施工、大跨度软流塑土层下的管棚施工等技术,希望能对同类地层条件下的隧道施工有一定的借鉴意义。【关键词】:南京地铁隧道盾构管棚抗浮注浆Abstract:NanjingMetroNo.1linepassesthroughveryplicatedearthlayers,suchasshalloepartsisjustunderth

2、eriverbed(0.7mtotheriverbottom).Therefore,manyconstructionmethodsongofthem,threeonesbededclayundertheegeologicalandenvironmentalconditions.Key,其中地线上6.11km,地下线10.81km,地上线占全线总长的36%。全线共设车站13座,其中地下站8座,控制中心设在市中心珠江路站东北侧。线路总体分布及站点设置如图1所示。2工程地质与水文地质概况南京市位于长江下游,其三面环山,一面涉水,地势起伏较大。市内丘陵、平原交错,现代水系

3、(主要为内秦淮河水系和金川河水系)贯流,地下埋藏有一条纵贯南北的古河道,形成了比较复杂的地貌形态。市区及市郊的一些剥蚀残丘大致呈北东向分布,形成三段基岩隆起,将南京市分割为南北两个小盆地,并由古河道将这两个盆地联系为整体。三段基岩隆起构成低山丘陵地貌,主要由剥蚀残山及侵蚀堆积阶地组成,其间发育有坳沟或山间洼地,地形起伏较大。低山丘陵区覆土层厚度一般不超过20m,局部地段基岩直接出露地表。古河道冲积平原主要由河漫滩及古河床构成,地形平坦,地势低平,其基岩埋藏较深,一般35~40m。古河道冲积平原一般发育四级埋藏阶地,土层主要为可塑状态粉质粘土,局部为软、流塑状态的粘

4、土及粉土等。对于南京地铁的不同区间,如图1所示,小行-中华门、珠江路-玄武门、南京站-迈皋桥区段,地层属低山丘陵地貌单元,而中华门-珠江路、玄武门-南京站区段则属于河漫滩地段。地铁沿线的水文地质条件与工程地质条件一样,都受地质、地貌控制。其地下水主要为孔隙潜水或弱承压水,地下水埋藏浅,一般于地面下1.0~2.0m。由于构成含水层的地层土质有差异,各土层的渗透性也有较大差异。古河道深槽含水砂层厚度大,透水性好,富水性强,最大渗透系数可达5×10-3cm/s(4.32m/d)。3浅覆地层隧道施工技术针对南京地层的古河床、河漫滩和低山丘陵等复杂多变的地层条件,综合考虑周

5、围环境特征及经济因素等,1号线选用了多种隧道施工方法,如高架、明挖、矿山暗挖、盾构掘进等,如表1所示。地铁1号施工过程中,有两个软土区段难度较大,一是三山街-中华门区段的浅覆土埋藏条件下,水下盾构隧道的推进施工,二是珠江路-鼓楼区间的软流塑粘土及粉土地层中,在建筑物下进行大跨度隧道掘进的管棚施工,再有是鼓楼-玄武门的浅覆岩层的爆破施工。3.1盾构穿越浅覆土地层的水下掘进施工技术3.1.1覆土水下盾构施工的特点和难点地铁1号线中华门-三山街区间隧道需穿越内秦淮河,其河道宽16.8m,河底距盾构顶部最浅覆土厚仅0.7m,河床底部表层土夹有大量碎石、填土及浮淤物,渗透性

6、极不规则,给盾构的推进带来极大的难点和风险,集中体现在两个方面:(1)极易引发突水事故。盾构推进一般要求覆土厚度在2~2.5d(d为隧道直径)之间,而本处覆土极薄,在如此薄层条件下进行盾构推进,极易引起表层土开裂;同时,该处直接位于河床水位之下,水源补给充分,一旦突水,后果不堪设想。(2)浅覆土隧道轴线控制难。对于本处如此浅覆土的地层,隧道所承受的浮力要远大于其上水土的压力,因此,自然状态下,即会导致隧道的上浮变形,需采取有效措施加以控制。3.1.2浅覆土水下盾构施工抗浮控制技术浅覆土盾构隧道上浮,会造成隧道衬砌上方土体被动破坏。如图2所示,假设水深为H1,隧道顶

7、部覆土厚度为H2,则被动区域土体的极限平衡条件为:本处河水深度H1为2.0m,内摩擦角为12.3°,内聚力C为8.9kpa,土的饱和重度γ为17.7kN/m3,管片外径R1为3.2m,内径R2为2.75m,混凝土重度γ混凝土为20KN/m3。由此计算,得最小覆土厚度H2为4.306m。显然,本处覆土厚度仅0.7m,不足以平衡隧道所受浮力。施工中,我们采用抗浮板和抗拔桩来解决这一问题。如图3所示,在隧道的上方河床的底部,构筑厚度为700mm的抗浮板,并在抗浮板的下方钻设直径为600mm深度为15m的灌注桩,桩与板锚固在一起,有效防止隧道在施工中及施工后的变形。3.

8、1.3盾构

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。