遥感地学智能图解模型支持下的土地覆盖-土地利用分类的论文

遥感地学智能图解模型支持下的土地覆盖-土地利用分类的论文

ID:10311019

大小:60.50 KB

页数:7页

时间:2018-07-06

遥感地学智能图解模型支持下的土地覆盖-土地利用分类的论文_第1页
遥感地学智能图解模型支持下的土地覆盖-土地利用分类的论文_第2页
遥感地学智能图解模型支持下的土地覆盖-土地利用分类的论文_第3页
遥感地学智能图解模型支持下的土地覆盖-土地利用分类的论文_第4页
遥感地学智能图解模型支持下的土地覆盖-土地利用分类的论文_第5页
资源描述:

《遥感地学智能图解模型支持下的土地覆盖-土地利用分类的论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、遥感地学智能图解模型支持下的土地覆盖/土地利用分类的论文摘要: 土地覆盖/土地利用(lc/lu)调查已经成为开展土地利用动态变化预测、自然灾害防治及土地利用规划、土地管理和环境保护的一项关键的基础性工作,受到广泛注意和重视。随着遥感技术和各种地学分析模型的发展和深入,利用遥感技术获得的影像数据对区域的lc/lu情况及其动态变化进行定期或不定期的监测,成为一种最为迅速可靠和理想有效的手段。常规的lc/lu遥感分类方法主要包括基于常规数理统计分类方法、基于人工神经网络分类方法、基于知识逻辑推理的分类方法等。论文综合这些方法的特性,提出了遥感地学智能图解模型支持下的lc/lu分类体系,

2、并以香港地区为试验对象,采用多平台遥感数据和辅助地理信息,进行了土地覆盖/土地利用遥感应用研究。关键词 遥感地学智能图解模型;土地覆盖—土地利用;遥感影像分类1引言  土地覆盖/土地利用(lc/lu)分类是随着遥感技术发展而出现的针对土地分类的新概念。土地覆盖侧重于土地的自然属性,是被自然营造体和人工建造物所覆盖的地表诸要素的综合体的反映,遥感影像分类可对所有地表覆盖物(包括已利用和未利用)进行分类;而土地利用则侧重于土地的社会属性,是人类根据土地的自然特点,按照一定的经济、社会目的,采取一系列生物、技术手段,对土地进行长期或周期性的经营管理和治理改造活动。土地利用是一个把土地的

3、自然生态系统变为人工生态系统的过程,是自然、经济、社会诸因素综合作用的复杂过程,土地利用的方式、程度、结构及地域分布和效益,既受自然条件影响,更受到各种社会、经济、技术条件的约束,而且社会生产方式往往起决定性的作用[1~2]。.土地利用是土地覆盖变化的最直接和主要的驱动因子。  lc/lu调查已经成为开展土地利用预测、自然灾害防治及土地规划管理和环境保护等关键的基础性工作,受到广泛重视。随着遥感技术和地学分析模型的深入发展,利用遥感技术对区域的土地覆盖或土地利用情况及动态变化进行定期或不定期的监测,成为最迅速可靠和理想有效的手段之一。在开展遥感lc/lu的调查研究工作中,经常将两

4、者合并考虑,建立统一的分类系统,称为遥感lc/lu分类体系。本文针对香港地区lc/lu特点,在多平台遥感数据(包括tm、spot-hrv、irs-1cpan)和地理辅助信息(包括地形数据和目视解译土地利用图)基础上,首先提出遥感地学智能图解模型(rsigim),并初步建立lc/lu智能化分类体系,最后是香港地区土地覆盖分类的实例分析。2土地覆盖/土地利用遥感分类一般研究方法  常规lc/lu遥感分类方法主要包括传统分类方法、人工神经网络分类方法、基于知识分类方法等。2.1传统lc/lu遥感分类方法  传统的遥感影像分类方法包括区域划分分类、分层分类(包括决策树)、统计分类等。其中

5、区域划分和分层分类主要是根据遥感影像中的地学分异规律,针对影像中属于不同大类或景观区域,通过层次划分采用不同的分类决策规则,从粗到细进行逐步分类。成功典例如腾冲航空遥感实验的景观分异的树状模式,通过对河湖沉积相的识别进行江汉平原土地利用分类等等[3]。这种分类方法需要依赖分类者对影像地学规律的达到一定的认识程度,才能够比较准确地反映真实的地学分布规律,其缺点是很难把握分类规则的标准,其中定性的成份比较多。而统计分类方法,如动态聚类、最小距离、最大似然分类器等,都是利用遥感数据的统计值特征或与训练样本数据之间的统计关系来进行地物分类,依赖于遥感影像数据的统计特性,一定程度上定量化地

6、反映类别间的数学分布的特征。但纯粹的数理统计方法,由于没有地学知识的支持而难以真实反映一些特殊的地学分布,特别是处理复杂空间信息时难以确定其统计参数。2.2人工神经网络影像分类  与传统分类方法相比,人工神经网络(ann)分类方法一般可获得更高精度的分类结果,因此ann方法在遥感土地覆盖/土地利用分类中被广泛应用,特别是对于复杂类型的土地覆盖分类,ann方法显示了其优越性。如hocclellad(1989)、hepner(1990)、t.yoshida(1994)、k.s.chen(1995)、j.d.paola(1997)等利用ann分类方法对tm图像进行土地覆盖分类,在不同程

7、度上提高了分类精度;kanellopoulos(1992)利用ann方法对spot影像的土地覆盖进行了多达20类的分类,取得比统计方法更精确的结果;g.m.foody(1996)用ann对土地覆盖中的混合像元现象进行了分解;l.bruzzone等(1997)在tm-5遥感数据、空间结构信息数据、辅助数据(包括高程、坡度等)等空间数据基础下,用ann方法对复杂土地利用进行了分类,比最大似然分类方法提高了9%的精度[4~8]。与统计分类方法相比较,ann方法具有更强的非线性映射能力,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。