2016年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)

2016年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)

ID:10215409

大小:1.04 MB

页数:11页

时间:2018-06-12

2016年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)_第1页
2016年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)_第2页
2016年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)_第3页
2016年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)_第4页
2016年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)_第5页
资源描述:

《2016年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0(B)3(C)4(D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“IaI=IbI”是“Ia

2、+bI=Ia-bI”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,yR,且xyo,则(A)-(B)(C)(-0(D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为·11·(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中

3、一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)设aR,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=_______________。(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A,B两点,则=_____

4、_______________.(12)已知为等差数列,为其前n项和,若,,则.(13)双曲线的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点。若正方形OABC的边长为2,则a=_______________.(14)设函数①若a=0,则f(x)的最大值为____________________;②若f(x)无最大值,则实数a的取值范围是_________________。三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)(15)(本小题13分)在ABC中,(I)求的大小(II)求的最大值(16)(本小题13分)A、B、

5、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A班66.577.58B班6789101112C班34.567.5910.51213.5(I)试估计C班的学生人数;(II)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(III)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记,表格中数据的

6、平均数记为,试判断和的大小,(结论不要求证明)·11·(17)(本小题14分)如图,在四棱锥P-ABCD中,平面PAD平面ABCD,PAPD,PA=PD,ABAD,AB=1,AD=2,AC=CD=,(I)求证:PD平面PAB;(II)求直线PB与平面PCD所成角的正弦值;(III)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求的值;若不存在,说明理由。(18)(本小题13分)设函数f(x)=xe+bx,曲线y=f(x)dhko(2,f(2))处的切线方程为y=(e-1)x+4,(I)求a,b的值;(II)求f(x)的单调区间。(19)(本小题14分)已

7、知椭圆C:(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(I)求椭圆C的方程;(II)设P的椭圆C上一点,直线PA与Y轴交于点M,直线PB与x轴交于点N。求证:lANllBMl为定值。(20)(本小题13分)设数列A:,,…(N≥2)。如果对小于n(2≤n≤N)的每个正整数k都有<,则称n是数列A的一个“G时刻”。记“G(A)是数列A的所有“G时刻”组成的集合。(I)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;(II)证明:若数列A中存在使得>,则G(A);(III)证明:若数列A满足-≤1(n=2,3,…,

8、N),则G

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。