2014届高考数学(理)一轮复习备考精析教案:12.3《二项式定理》(新人教a版)

2014届高考数学(理)一轮复习备考精析教案:12.3《二项式定理》(新人教a版)

ID:10194205

大小:64.50 KB

页数:3页

时间:2018-06-12

2014届高考数学(理)一轮复习备考精析教案:12.3《二项式定理》(新人教a版)_第1页
2014届高考数学(理)一轮复习备考精析教案:12.3《二项式定理》(新人教a版)_第2页
2014届高考数学(理)一轮复习备考精析教案:12.3《二项式定理》(新人教a版)_第3页
资源描述:

《2014届高考数学(理)一轮复习备考精析教案:12.3《二项式定理》(新人教a版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、12.3二项式定理典例精析题型一 二项展开式的通项公式及应用【例1】已知的展开式中,前三项系数的绝对值依次成等差数列.(1)求证:展开式中没有常数项;(2)求展开式中所有的有理项.【解析】由题意得2C·=1+C·()2,即n2-9n+8=0,所以n=8,n=1(舍去).所以Tr+1=·()·=(-)r···=(-1)r··(0≤r≤8,r∈Z).(1)若Tr+1是常数项,则=0,即16-3r=0,因为r∈Z,这不可能,所以展开式中没有常数项.(2)若Tr+1是有理项,当且仅当为整数,又0≤r≤8,r∈Z,所以r=0,4

2、,8,即展开式中有三项有理项,分别是T1=x4,T5=x,T9=x-2.【点拨】(1)把握住二项展开式的通项公式,是掌握二项式定理的关键.除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系、性质;(2)应用通项公式求二项展开式的特定项,如求某一项,含x某次幂的项,常数项,有理项,系数最大的项等,一般是应用通项公式根据题意列方程,在求得n或r后,再求所需的项(要注意n和r的数值范围及大小关系);(3)注意区分展开式“第r+1项的二项式系数”与“第r+1项的系数”.【变式训练1】若(x+)n的展开式的前3项

3、系数和为129,则这个展开式中是否含有常数项,一次项?如果有,求出该项,如果没有,请说明理由.【解析】由题知C+C·2+C·22=129,所以n=8,所以通项为Tr+1=C(x)8-r=,故r=6时,T7=26Cx=1792x,所以不存在常数项,而存在一次项,为1792x.题型二 运用赋值法求值【例2】(1)已知(1+x)+(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+anxn,且a1+a2+…+an-1=29-n,则n=  ;(2)已知(1-x)n=a0+a1x+a2x2+…+anxn,若5a1+2a2

4、=0,则a0-a1+a2-a3+…+(-1)nan=  .【解析】(1)易知an=1,令x=0得a0=n,所以a0+a1+…+an=30.又令x=1,有2+22+…+2n=a0+a1+…+an=30,即2n+1-2=30,所以n=4.(2)由二项式定理得,a1=-C=-n,a2=C=,代入已知得-5n+n(n-1)=0,所以n=6,令x=-1得(1+1)6=a0-a1+a2-a3+a4-a5+a6,即a0-a1+a2-a3+a4-a5+a6=64.【点拨】运用赋值法求值时应充分抓住代数式的结构特征,通过一些特殊值代入构

5、造相应的结构.【变式训练2】设(3x-1)8=a0+a1x+a2x2+…+a7x7+a8x8.求a0+a2+a4+a6+a8的值.【解析】令f(x)=(3x-1)8,因为f(1)=a0+a1+a2+…+a8=28,f(-1)=a0-a1+a2-a3+…-a7+a8=48,所以a0+a2+a4+a6+a8==27×(1+28).题型三 二项式定理的综合应用【例3】求证:4×6n+5n+1-9能被20整除.【解析】4×6n+5n+1-9=4(6n-1)+5(5n-1)=4[(5+1)n-1]+5[(4+1)n-1]=20[

6、(5n-1+C5n-2+…+C)+(4n-1+C4n-2+…+C)],是20的倍数,所以4×6n+5n+1-9能被20整除.【点拨】用二项式定理证明整除问题时,首先需注意(a+b)n中,a,b中有一个是除数的倍数;其次展开式有什么规律,余项是什么,必须清楚.【变式训练3】求0.9986的近似值,使误差小于0.001.【解析】0.9986=(1-0.002)6=1+6×(-0.002)1+15×(-0.002)2+…+(-0.002)6.因为T3=C(-0.002)2=15×(-0.002)2=0.00006<0.001

7、,且第3项以后的绝对值都小于0.001,所以从第3项起,以后的项都可以忽略不计.所以0.9986=(1-0.002)6≈1+6×(-0.002)=1-0.012=0.988.总结提高1.利用通项公式可求展开式中某些特定项(如常数项、有理项、二项式系数最大项等),解决这些问题通常采用待定系数法,运用通项公式写出待定式,再根据待定项的要求写出n、r满足的条件,求出n和r,再确定所需的项;2.赋值法是解决二项展开式的系数和、差问题的一个重要手段;3.利用二项式定理解决整除问题时,关键是进行合理的变形,使得二项展开式的每一项都

8、成为除数的倍数.对于余数问题,要注意余数的取值范围.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。