极限理论在数学中的应用

极限理论在数学中的应用

ID:10169147

大小:28.00 KB

页数:5页

时间:2018-06-12

极限理论在数学中的应用_第1页
极限理论在数学中的应用_第2页
极限理论在数学中的应用_第3页
极限理论在数学中的应用_第4页
极限理论在数学中的应用_第5页
资源描述:

《极限理论在数学中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、极限理论在数学中的应用摘要:本文阐述了极限思想的起源和发展,分析了极限思想的思维本质和哲学意义,研究了极限理论在微积分数学学科分支的应用,并给出了具体的例子.关键词:起源极限理论应用微积分1.引言极限理论是整个微积分的理论基础,也是极限理论中的基本概念,对极限理论和极限概念理解和掌握,对以后的学习都会有很大的影响.极限理论是从初等数学到高等数学的重要转折,极限概念描述的是变量在某一变化过程中的变化趋势,是从有限到无限、近似到精确、量变到质变过程,与初等数学中的概念有很大的区别,但是如果能从数学的发展历史中了

2、解极限思想和极限理论的形成过程,弄清极限概念的描述和逻辑表述形式,则对理解极限理论,掌握和应用极限概念,以及极限理论在数学,物理及其他学科的应用会起到很大的作用.2.极限理论的起源[1]5极限理论在数学中的应用摘要:本文阐述了极限思想的起源和发展,分析了极限思想的思维本质和哲学意义,研究了极限理论在微积分数学学科分支的应用,并给出了具体的例子.关键词:起源极限理论应用微积分1.引言极限理论是整个微积分的理论基础,也是极限理论中的基本概念,对极限理论和极限概念理解和掌握,对以后的学习都会有很大的影响.极限理论

3、是从初等数学到高等数学的重要转折,极限概念描述的是变量在某一变化过程中的变化趋势,是从有限到无限、近似到精确、量变到质变过程,与初等数学中的概念有很大的区别,但是如果能从数学的发展历史中了解极限思想和极限理论的形成过程,弄清极限概念的描述和逻辑表述形式,则对理解极限理论,掌握和应用极限概念,以及极限理论在数学,物理及其他学科的应用会起到很大的作用.2.极限理论的起源[1]5极限的朴素思想和应用可追溯到古代,中国早在2000年前就已能算出方形、圆形、圆柱等几何图形的面积和体积,3世纪刘徽创立的割圆术,就是用圆

4、内接正多边形面积的极限是圆面积这一思想近似计算圆周率,并指出“割之弥细”“所失弥少”,割之又割,以至不可割,则与圆合体而无所失矣,这就是早期的极限思想。到了17世纪,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换,还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代.到了17世纪后半叶,牛顿和莱布尼茨在前人研究的基础上,分别从物理与几何的不同思想基础、不同研究方向,分别独立地建立了微积分学.他们建立微积分的出发点是直观的无穷小量,极限概念被明确提出,但含

5、糊不清.牛顿在发明微积分的时候,合理设想:越小,这个平均速度应当越接近物体在时刻时的瞬时速度.这一新的数学方法受到数学家和物理学家欢迎,并充分地运用它解决了大量过去无法问津的科技问题,因此,整个18世纪可以说是微积分的世纪.但由于它逻辑上的不完备也招来了哲学上的非难甚至嘲讽与攻击贝克莱主教曾猛烈地攻击牛顿的微分概念.实事求是地讲,把瞬时速度说成是无穷小时间内所走的无穷小的距离之比,即“时间微分”与“距离微分”之比,是牛顿一个含糊不清的表述.其实,牛顿曾在著作中明确指出:所谓“最终的比”不是“最终的量”的比,

6、而是比所趋近的极限.但他既没有清除另一些模糊不清的陈述,又没有严格界说极限的含义.包括莱布尼兹对微积分的最初发现,也没有明确极限的意思.因而,牛顿及其后一百年间的数学家,都不能有力地还击贝克莱的这种攻击,这就是数学史上所谓第二次数学危机.经过近一个世纪的尝试与酝酿,数学家们在严格化基础上重建微积分的努力到19世纪初开始获得成效.由于法国数学家柯西、德国数学家魏尔斯特拉等人的工作,以及实数理论的建立,才使极限理论建立在严密的理论基础之上.至此极限理论才真正建立起来,微积分这门学科才得以严密化.3.极限理论在数

7、学中的应用假设曲线y=f(x)有斜渐近线y=kx+b.如图1所示,曲线上动点M到渐近线的距离为

8、MN

9、=

10、MPcosα

11、=

12、f(x)-(kx+b)

13、■.按渐近线的定义,当x→∝时,

14、PN

15、→0,即有■[f(x)-(kx+b)]=0,或■[f(x)-kx]=b(4.1)又由■[■-k]=■■[f(x)-kx]=0・b=0,得到■■=k.(4.2)由上面的讨论可知,若曲线y=f(x)有斜渐近线y=kx+b,则常数k与b可由(4.1)式和(4.2)式确定;反之,若由(4.2)、(4.1)两式求得k与b,则可知

16、P

17、N

18、→0(x→+∝),从而y=kx+b为曲线y=f(x)的渐近线.5例1.求曲线f(x)=■的渐近线.解由4.2式■=■→1■x→∝得k=1.再由(4.1)式f(x)-kx=■x→∝得b=-2.从而求得此曲线的斜渐近线方程为y=x-2,又由f(x)=■易见■f(x)=∝,■f(x)=∝,所以此曲线垂直渐近线x=-3和x=1.4.结语5极限理论是微积分学的基本理论,极限概念是一个抽象的概念,比较难理解.根据Siep

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。