欢迎来到天天文库
浏览记录
ID:10164751
大小:29.00 KB
页数:6页
时间:2018-06-12
《新课程理念下初中数学问题情境创设方式的探索》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、新课程理念下初中数学问题情境创设方式的探索摘要:新课程理念下创设问题情景,是激发学生学习动机,培养创新思维的有效手段,是数学教学的重要环节。它不仅可以激发学生的学习兴趣,充分调动学生的学习积极性,使学生掌握数学思维的策略和方法,从而提高解决数学问题的能力。关键词:数学教学;问题情境;创设方式初中数学新理念提出要“以人为本,让学生成为学习的主人”,而学习的最基本要素是思维,现代心理学认为,思维是从问题开始的,激发思维最典型的情境是问题情境。通过创设问题情境来调动学生思维的参与,使学生听其言,入其境,激发他们饱满的学习热情,引导他们以积极愉快的心态和旺盛的精力主动探索,主动思考,成为学习
2、的主人,从而达到良好的教学效果。那么,数学教学中应该创设怎样的问题情境才有价值?这是值得我们每一个教师深思的问题。本文即以此为主题谈几点个人的看法:一、创设动画式问题情境,引发学生的参与兴趣6由于中学生对于形象的动画、投影、实物或生动的语言描述容易关注,在教学中,可采用多媒体辅助教学展示问题情境来激发学生的学习兴趣。利用图、形、声、像等媒体演示,让静止的物体动起来,使之变得新奇有趣,他们思维也就容易被启迪、开发、激活,对创设的问题情境产生可持续的动机,进而促使学生进行积极的思维活动。如在“勾股定理的逆定理”这一课的教学时,我用多媒体演示:古埃及人的金字塔。让学生猜测一下它的塔基可能的
3、形状?(学生有的猜是四边形,有的猜是正方形……)这时我动画演示:剖开塔基的截面,显示它的形状,正方形的形状得到认同,从而引出探究的问题:公元前2700年,古埃及人就已经知道在建筑中应用直角的知识,那么你知道古埃及人究竟是怎样确定直角的吗?……这样充分抓住学生的好奇心,吸引学生的注意,激发学生的兴趣,使学生迅速地进入最佳学习状态。二、创设生活式问题情境,激发学生的体验动机6数学来源于生活,生活中处处有数学。创设贴近学生生活的问题情境能唤起学生学习的亲切感,培养学生对所学知识的兴趣,并引起他们的注意,集中精力,积极思考,主动探究发现知识。把“问题情境”生活化,就是把“问题情境”与学生的生
4、活紧密联系起来,让学生亲自体验问题情境中的问题、增加学生的直接经验,这不仅有利于学生理解问题情境中的数学问题,培养学生的观察能力和初步解决实际问题的能力,而且有利于使学生体验到生活中的数学是无处不在,并体会学习数学的价值。例如在“线段大小的比较”的一课中可以创设这样的问题情境:汽车站入口处常常会在墙上1.1m、1.4m处各标上一条红线,这些红线有什么作用呢?通过引导同学们的讨论,得知是小朋友进站时,只要走到这里脚跟靠墙站立,看看身高有没有超过免票线,或者半票线,就可以决定这个孩子是否需要购买全票。由此引入线段大小比较的学习,学生会倍感兴趣,积极地投入到本课的学习中去,会使教学效果得到
5、较大的提高。三、创设质疑式问题情境,变“被动接受”为“主动探究”6孔子说过:“疑虑,思之始,学之始”。新旧知识的矛盾,学生的直观表象与客观事实之间的矛盾,生活经验与科学知识之间的矛盾,都可以引起学生对新事物的疑问。创设这样的问题情境,是让学生先处在一种矛盾状态,以矛盾深深扣动学生的心弦,再通过引导学生对问题进行分析、对比、讨论、归纳,不仅能使学生进一步地理解新的知识,而且对学生情感、态度,意志等方面的发展都具有积极的促进作用。例如:在讲授“有理数乘法”时,先复习小学学过的正有理数的乘法:3+3+3+3=3×4,3×4就是4个3相加,接着提出问题:3×(-4)是什么意思呢?总不能说是负
6、4个3相加吧?那又该如何理解呢?于是产生疑问,教师利用矛盾冲突,激发学生思考,逐步诱导。前面已学过可用正负数表示两个相反意义的量,在学有理数加法时是在数轴上进行的,如向东走7米再向西走4米,两次一共向东走3米,即7+(-4)=3,那么,有理数的乘法是否也能在数轴上进行呢?这样一来,充分激发了学生的求知动机与欲望,接下来的过程也就水到渠成了。四、创设阶梯性问题情境,注重问题情境的层次性问题情境的设计要由浅入深,由易到难,层层递进,把学生的思维逐步引向深入。创设阶梯式问题情境,就是把一个复杂问题分解成若干个相互联系的简单问题或步骤,也就是说,教师应当依次提出一些适合学生已有知识结构和心理
7、发展水平的小问题,引导学生发挥自己的认识能力去发现和探求有关解决问题的依据,在解决所提出的一个个小问题的过程中一步步地克服困难,直至找到解决问题的方法。学生学过“简易方程”和“绝对值”后,对解方程�x-3
8、=7这道题还有较大的难度,若将它分解为几个有关联小问题,把问题简单化:①∵�7�=7,�-7�=7,∴绝对值都等于7的有哪些数?②∵�a�=7,∴a=7或a=-7,即绝对值是7的数是什么?③�x-3�=7,把x-3看作问题②中的a,于是,x-3=7.得x
此文档下载收益归作者所有