gdp的计量经济模型分析论文

gdp的计量经济模型分析论文

ID:10028841

大小:27.00 KB

页数:6页

时间:2018-05-21

gdp的计量经济模型分析论文 _第1页
gdp的计量经济模型分析论文 _第2页
gdp的计量经济模型分析论文 _第3页
gdp的计量经济模型分析论文 _第4页
gdp的计量经济模型分析论文 _第5页
资源描述:

《gdp的计量经济模型分析论文 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、GDP的计量经济模型分析论文GDP的计量经济模型分析论文GDP的计量经济模型分析论文GDP的计量经济模型分析论文  提要本文建立了1952~2007年中国GDP的计量经济模型(ARIMA模型)。对有指数趋势的原始序列用单位根法和自相关图法判别差分后序列是否平稳,先通过最小BIC值建立计量经济模型中的时间序列模型,然后利用AIC和SBC准则判别所建立的模型是否为最优,然后用条件最小二乘法对模型的参数进行估计,并进行白噪声检验和参数显著性检验,预测2008~2015年GDP的发展水平。  A时间序列是指按照时间顺序得到的变量的观测值,而按时间顺序得到的经济变量

2、的观测值即为经济时间序列。  文中讨论的ARIMA模型是一类常用的随机时序模型,它是一种精度较高的时序短期预测方法,其基本思想是:某些时间序列是依赖于时间t的一族随机变量,构成该时序的单个序列值虽然具有不确定性,但整个序列的变化却有一定的规律性,可以用相应的数学模型近似描述。通过对该数学模型的分析研究,能够更本质地认识时间序列的结构与特征,达到最小方差意义下的最优预测。我国GDP总量的形成是一个复杂的过程,受经济、政策、科技水平、自然等多因素的影响。  GDP总量或人均GDP预测的理论及应用研究非常多。国内外学者对我国GDP的研究方法主要有三种:时间序列方

3、法:研究GDP随时间发展的规律。通过时间序列的历史数据揭示现象随时间变化的规律,建立ARMA、ARCH等模型,将这种规律延伸到未来,从而对该现象的未来作出预测;协整检验的计量经济学模型:通过分析影响GDP发展的本质因素,研究GDP与这些因素的协整关系,建立计量经济学模型;生产函势,并具有很强的非平稳性。  2、数据平稳化。对于含有指数趋势的时间序列,可以通过取对数将指数趋势转化为线性趋势,然后再进行差分以消除线性趋势。取对数过后的GDP依旧存在非平稳性,需要对其进行差分,先进行一阶差分,绘制一阶差分后的时间序列图。  从图中很难看出一阶差分后的序列是否平稳

4、。于是,首先考察序列的样本自相关图,从直观上检验该序列的平稳性;其次,我们对该序列进行ADF单位根检验。从自相关图中发现序列的自相关系数一直都比较小,延迟一阶后始终控制在2倍标准差的范围以内,可以认为该序列在零轴附近波动,具有短期相关性,因而可以直观地判别一阶差分后序列平稳。从单位根检验结果看,由于Tau统计量的P值都小于,可以认为该序列平稳,不存在一个单位根,即有指数趋势的序列,经过取对数、一阶差分后序列平稳。对差分后序列进行纯随机检验,发现延迟各阶的P值显著地小于α,拒绝原假设,即可以认为序列为非白噪声序列。  模型的建立与识别。  从上文分析已知道,

5、序列经过差分后为平稳非白噪声序列,可以对差分后序列拟合ARMA模型。即是对原始序列用ARIMA模型拟合。考察序列的样本自相关图,自相关图显示延迟1阶之后,自相关系数全部衰减到2倍标准差范围内波动,但序列在延迟4阶后,衰减为小值的过程相当缓慢,该自相关系数可以认为不截尾。再看样本偏自相关图,从图中可以看出,除了延迟一阶的偏自相关系数显著大于2倍标准差之外,其他的偏自相关系数都在2倍标准差范围内做小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以偏自相关系数可以视为1阶截尾。综合序列自相关系数和偏自相关系数的性质,为拟合模型定阶为AR。  参数

6、估计。利用SAS,用estimate命令可以得到未知参数估计结果及拟合统计量的值。从图中可以看出均值MU显著,参数也显著。输出结果显示序列的拟合模型为ARIMA,模型口径为:xt=++εt  模型检验。确定了拟合模型的口径之后,就要对拟合模型进行必要的检验。  1、模型的显著性检验。模型的显著性检验主要是检验模型的有效性,一个模型是否显著有效主要看它提取的信息是否充分。一个好的拟合模型应该能够提取观察值序列中几乎所有的样本相关信息,换言之,拟合残差项中将不再蕴涵任何相关信息,即残差序列应该为白噪声序列。为考核所建模型的优劣,需要对模型的残差序列进行检验,检

7、验其是否为白噪声序列。若残差序列是白噪声序列,可认为模型合理,适用于预测,否则,意味着残差序列还存在有用的信息没被提取,需要进一步改进模型。公务员之家  从SAS作出的残差自相关图中可以看出除延迟6阶外,其余的延迟各阶的LB统计量的P值均显著大于α,可知残差通过了白噪声检验,该拟合模型显著成立。即认为残差序列为白噪声序列,拟合模型显著有效。2、参数的显著性检验。参数的显著性检验就是要检验每一个未知参数是否显著非零。准1的条件最小二乘检验结果是t统计量的值为,P值为;均值的条件最小二乘检验结果是t统计量的值为,P值  模型优化。当一个拟合模型通过了检验,说明

8、在一定的置信水平下,该模型能有效地拟合观察值序列的波动,但这种有效

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。