欢迎来到天天文库
浏览记录
ID:9878688
大小:399.00 KB
页数:12页
时间:2018-05-13
《高中物理牛顿运动定律知识点含几种典型例题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、牛顿运动定律的综合应用习题典型例题透析类型一、瞬时加速度的分析 1、质量分别为mA和mB的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,如图所示,当细线被剪断的瞬间。关于两球下落加速度的说法中,正确的是( ) A、aA=aB=0 B、aA=aB=g C、aA>g,aB=0 D、aA<g,aB=0 解析:分别以A、B两球为研究对象。当细线束剪断前,A球受到竖直向下的重力mAg、弹簧的弹力T,竖直向上细线的拉力T′;B球受到竖直向下的重力mBg,竖直向上弹簧的弹力T,如下图。 它们都处于力平衡状态,因
2、此满足条件, T=mBg T′=mAg+T=(mA+mB)g 细线剪断的瞬间,拉力T′消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态。所以,B的加速度aB=0,而A球则在重力和弹簧的弹力作用下,其瞬时加速度为: 答案:C举一反三 【变式】如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,它们的质量之比是l∶2∶3,设所有接触面都光滑,当沿水平方向抽出木块C的瞬间,木块A和B的加速度分别是aA= ,aB= 。 解析:在抽出木块C前,弹簧的弹力F=mAg。
3、抽出木块C瞬间,弹簧弹力不变,所以,A所受合力仍为零,故aA=0。木块B所受合力FB=mBg+F=,所以。 答案: 类型二、力、加速度、速度的关系 2、如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的?(按论述题要求解答) 解析:因为速度变大或变小取决于速度方向与加速度方向的关系(当a与v同向时v变大,当a与v反向时v变小),而加速度由合力决定,所以此题要分析v、a的大小变化,必须要分析小球受到的合力的变化。小球接触弹簧时受
4、两个力作用:向下的重力和向上的弹力(其中重力为恒力)。 在接触的头一阶段,重力大于弹力,小球合力向下,且不断变小(因为F合=mg-kx,而x增大),因而加速度减少(a=F合/m),由于a与v同向,因此速度继续变大。 当弹力增大到大小等于重力时,合外力为零,加速度为零,速度达到最大。 之后,小球由于惯性仍向下运动,但弹力大于重力,合力向上且逐渐变大(F合=kx-mg)因而加速度向上且变大,因此速度减小至零。 (注意:小球不会静止在最低点,将被弹簧上推向上运动,请同学们自己分析以后的运动情况). 综上分析得:小球
5、向下压弹簧过程,F方向先向下后向上,大小先变小后变大;a方向先向下后向上,大小先变小后变大;v方向向下,大小先变大后变小。 (向上推的过程也是先加速后减速)。举一反三 【变式】如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点,今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是:() A.物体从A到B速度越来越大,从B到C速度越来越小 B.物体从A到B速度越来越小,从B到C速度不变 C.物体从A到B先加速后减速,从B到C一直减速运动
6、 D.物体在B点受合外力为零 解析:物体从A到B的过程中水平方向一直受到向左的滑动摩擦力Ff=μmg大小不变;还一直受到向右的弹簧的弹力,从某个值逐渐减小为零,开始时,弹力大于摩擦力,合力向右,物体向右加速,随着弹力的减小,合力越来越小;到A、B间的某一位置时,弹力和摩擦力大小相等,方向相反,合力为零,速度达到最大;随后,摩擦力大于弹力,合力增大但方向向左,合力方向与速度方向相反,物体开始做减速运动,所以小物块由A到B的过程中,先做加速度减小的加速运动,后做加速度增大的减速运动。从B到C一直减速运动。 答案:C类型
7、三、整体法和隔离法分析连接体问题 3、为了测量木板和斜面间的动摩擦因数,某同学设计这样一个实验。在小木板上固定一个弹簧秤(弹簧秤的质量不计),弹簧秤下端吊一个光滑的小球。将木板和弹簧秤一起放在斜面上。当用手固定住木板时,弹簧秤示数为F1;放手后使木板沿斜面下滑,稳定时弹簧秤示数为F2,测得斜面倾角为θ,由以上数据算出木板与斜面间的动摩擦因数。(只能用题中给出的已知量表示) 解析:把木板、小球、弹簧看成一个整体,应用整体法。 木板、小球、弹簧组成的系统,当沿斜面下滑时,它们有相同的加速度。
8、 设,它们的加速度为a, 则可得:(m球+m木)gsinθ-μ(m球+m木)gcosθ=(m球+m木)a 可得:a=gsinθ-μgcosθ ① 隔离小球,对小球应用隔离法, 对小球受力分析有:mgsinθ-F2=ma ② 而:mgsinθ=F1 ③ 由①②得:F2=μmgcosθ ④ 由③
此文档下载收益归作者所有