欢迎来到天天文库
浏览记录
ID:8849726
大小:213.69 KB
页数:9页
时间:2018-04-09
《2014年全国各地中考数学真题分类解析汇编:18图形的展开与叠折》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、图形的展开与叠折一、选择题1.(2014•安徽省,第8题4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( ) A.B.C.4D.5[来源:学+科+网Z+X+X+K]考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2
2、+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大. 2.(2014年广东汕尾,第9题4分)如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( ) A.我B.中C.国D.梦分析:利用正方体及其表面展开图的特点解题.解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选D.[来源:学*科*网Z*X*X*K]点评:本题考查
3、了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.(2014•浙江宁波,第3题4分)用矩形纸片折出直角的平分线,下列折法正确的是() [来源:Z#xx#k.Com]A.B.C.D.考点:翻折变换(折叠问题).分析:根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.解答:解:A.当长方形如A所示对折时,其重叠部分两角的和一个顶点处小于90°,另一顶点处大于90°,故本选项错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故本选项错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶
4、点,所以不可能是角的平分线,故本选项错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,正确.故选:D.点评:本题考查的是角平分线的定义及图形折叠的性质,熟知图形折叠的性质是解答此题的关键.4.(2014•浙江宁波,第10题4分)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是() A.五棱柱B.六棱柱C.[来源:学+科+网Z+X+X+K]七棱柱D.八棱柱考点:认识立体图形分析:
5、根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故此选项错误;[来源:学科网]B、六棱柱共18条棱,故此选项正确;C、七棱柱共21条棱,故此选项错误;D、九棱柱共27条棱,故此选项错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.5.(2014•菏泽,第5题3分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确
6、展开图为()[来源:Z§xx§k.Com] A.B.C.D.考点:几何体的展开图;截一个几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.点评:考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.二.填空题1.(2014•福建泉州,第17题4分)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1
7、)AB的长为 1 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.[来源:Zxxk.Com]考点:圆锥的计算;圆周角定理专题:计算题.分析:(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=,然后解方程即可.解答:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=,∴AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=,解得r=.故答案为1,.点评:本题考
8、查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理. 2.(2014•毕节地区,第20题5分)如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在
此文档下载收益归作者所有