欢迎来到天天文库
浏览记录
ID:8667858
大小:660.50 KB
页数:3页
时间:2018-04-04
《数学:26.1二次函数(第2课时)教案(人教新课标九年级下) 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、26.1 二次函数(2)教学目标:1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯重点难点:重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。教学过程:一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,
2、应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=ax2的图象。解:(1)列表:在x的取值范围内列出函数对应值表:x…-3-2-10123…y…9410149…(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。抛物线概念:像这样的曲线
3、通常叫做抛物线。顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,
4、都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。对于2,教师要继续巡视,指导学生画函数图象,两个函数的图象的特点;教师可引导学生类比1得出。对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,0).四、归纳、概括函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标
5、是______。如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。图象的这些特点反映了函数的什么性质?先让学生观察下图,回答以下问题;(1)XA、XB大小关系如何?是否都小于0?(2)yA、yB大小关系如何?(3)XC、XD大小关系如何?是否都大于0?(4)yC、yD大小关系如何?(XAyB;XC6、,且XC>0,XD>0,yCO时,函数值y随X的增大而______;当X=______时,函数值y=ax2(a>0)取得最小值,最小值y=______以上结论就是当a>0时,函数y=ax2的性质。思考以下问题:观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a7、,顶点抛物线上位置最高的点。图象的这些特点,反映了当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。五、课堂练习:P6练习1、2、3、4。六、作业:1.如何画出函数y=ax2的图象? 2.函数y=ax2具有哪些性质? 3.谈谈你对本节课学习的体会。
6、,且XC>0,XD>0,yCO时,函数值y随X的增大而______;当X=______时,函数值y=ax2(a>0)取得最小值,最小值y=______以上结论就是当a>0时,函数y=ax2的性质。思考以下问题:观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a7、,顶点抛物线上位置最高的点。图象的这些特点,反映了当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。五、课堂练习:P6练习1、2、3、4。六、作业:1.如何画出函数y=ax2的图象? 2.函数y=ax2具有哪些性质? 3.谈谈你对本节课学习的体会。
7、,顶点抛物线上位置最高的点。图象的这些特点,反映了当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。五、课堂练习:P6练习1、2、3、4。六、作业:1.如何画出函数y=ax2的图象? 2.函数y=ax2具有哪些性质? 3.谈谈你对本节课学习的体会。
此文档下载收益归作者所有