欢迎来到天天文库
浏览记录
ID:8583440
大小:191.00 KB
页数:4页
时间:2018-04-02
《2013新人教a版必修二2.1《空间点、直线、平面之间的位置关系》word教案1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二课时§2.1.2空间中直线与直线之间的位置关系一、教学目标:1、知能目标(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。2、情感目让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。二、教学重点、难重点:1、异面直线的概念;2、公理4及等角定理。难点:异面直线所成角的计算。三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。2、教学用具:多媒体、长
2、方体模型、三角板四、教学过程(一)课题导入1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:共面直线相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、(1)师:在同一平面内,如果两条直线都与第三
3、条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗?生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线=>a∥ca∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。(2)例2(多媒体)例2的讲解让学生掌握了公理4的运用(3)教材P50探究让学生在思考和交流中提升了对公理4的运用能力。3、组织学
4、生思考教材P51思考让学生观察、思考:∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ADC=A'D'C',∠ADC+∠A'B'C'=1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补教师强调:并非所有关于平面图形的结论都可以推广到空间中来。4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角
5、)叫异面直线a与b所成的角(夹角)。(2)强调:①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。(3)例3例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。(三)课堂练习教材P53练习1、2充分调动学生动手的积极性,教师适时给予肯定。(四)课堂小
6、结在师生互动中让学生了解:(1)本节课学习了哪些知识内容?(2)计算异面直线所成的角应注意什么?(五)课后作业1、判断题:(1)a∥bc⊥a=>c⊥b()(1)a⊥cb⊥c=>a⊥b()2、填空题:在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有________条。3、P56习题2.1A组6第三课时§2.1.3—2.1.4空间中直线与平面、平面与平面之间的位置关系一、教学目标:1、知能目标(1)了解空间中直线与平面的位置关系;(2)了解空间中平面与平面的位置关系;(3)培养学生的空间想象能力。二、教学重点、难点重点:空间直线
7、与平面、平面与平面之间的位置关系。难点:用图形表达直线与平面、平面与平面的位置关系。三、学法与教学用具1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。2、教学用具:多媒体、长方体模型四、教学思想(一)课题导入教师以生活中的实例以及课本P53的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题)(二)研探新知1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公
8、共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α例4(多媒体展示)师生共同完成例4例4的给出加深了学生对这几种位置关系的理解。2、引导学生对生活实例以及对长方体模型
此文档下载收益归作者所有