2018版高中数学北师大版必修一学案第二章 章末复习课

2018版高中数学北师大版必修一学案第二章 章末复习课

ID:8372814

大小:657.84 KB

页数:9页

时间:2018-03-23

2018版高中数学北师大版必修一学案第二章 章末复习课 _第1页
2018版高中数学北师大版必修一学案第二章 章末复习课 _第2页
2018版高中数学北师大版必修一学案第二章 章末复习课 _第3页
2018版高中数学北师大版必修一学案第二章 章末复习课 _第4页
2018版高中数学北师大版必修一学案第二章 章末复习课 _第5页
资源描述:

《2018版高中数学北师大版必修一学案第二章 章末复习课 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2017-2018学年高中数学北师大版必修1学案学习目标 1.构建知识网络,理解其内在联系.2.盘点重要技能,提炼操作要点.3.体会数学思想,培养严谨灵活的思维能力.1.对函数的进一步认识(1)函数是描述变量之间依赖关系的重要数学模型.它的三要素是定义域、值域和对应关系.函数的值域是由定义域和对应关系所确定的.(2)研究函数要遵从“定义域优先”的原则,表示函数的定义域和值域时,要写成集合的形式,也可用区间表示.(3)函数的表示方法有三种:解析法、图像法和列表法.在解决问题时,根据不同的需要,选择恰当的方法表示函数是很重要的.(4)分段函数是一种函数模型,它是一个函数而并

2、非几个函数.(5)函数与映射是不同的概念,函数是一种特殊的映射,是从非空数集到非空数集的映射.在映射f:A→B中,A中的元素x称为原像,B中的对应元素y称为x的像.2.函数的单调性函数的单调性是在定义域内讨论的,若要证明f(x)在区间[a,b]上是增函数或减函数,必须证明对[a,b]上的任意两个自变量的值x1,x2,当x1<x2时都有f(x1)<f(x2)或f(x1)>f(x2)成立;若要证明f(x)在区间[a,b]上不是单调函数,只要举出反例,即只要找到两个特殊的x1,x2,不满足定义即可.单调函数具有下面性质:设函数f(x)定义在区间I上,且x1,x2∈I,则(1)

3、若函数f(x)在区间I上是单调函数,则x1=x2⇔f(x1)=f(x2).(2)若函数f(x)在区间I上是单调函数,则方程f(x)=0在区间I上至多有一个实数根.(3)若函数f(x)与g(x)在同一区间的单调性相同,则在此区间内,函数f(x)+g(x)亦与它们的单调性相同.函数单调性的判断方法:①定义法;②图像法.3.函数的奇偶性判定函数奇偶性,一是用其定义判断,即先看函数f(x)的定义域是否关于原点对称,再检验f(-x)与f(x)的关系;二是用其图像判断,考察函数的图像是否关于原点或y轴对称去判断,但必须注意它是函数这一大前提.92017-2018学年高中数学北师大版

4、必修1学案类型一 函数的三要素例1 已知函数f(x)=(1)当a=2时,求f(x)的定义域、值域;(2)若存在x1≠x2,使f(x1)=f(x2),求a的取值范围.    反思与感悟 分段函数也是函数,所以它的定义域、值域都分别是一个数集,求定义域、值域时要把各段相应的值合并.在(2)中寻找不同的x,使其对应相同的y时,也要把目光放在整个函数上.跟踪训练1 设函数f(x)=若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(  )A.(,]B.(,)C.(,6]D.(,6)类型二 函数性质的综合应用例2 已知函数f(x

5、)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值;(3)解不等式f(x)-f(-x)>2.   反思与感悟 (1)92017-2018学年高中数学北师大版必修1学案解决有关函数性质的综合应用问题的通法就是根据函数的奇偶性解答或作出图像辅助解答,先证明函数的单调性,再由单调性求最值.(2)研究抽象函数的性质时要紧扣其定义,同时注意特殊值的应用.跟踪训练2 函数f(x)的定义域为D={x

6、x≠0},且满足对于任意x1,x2∈D,有f(x1·

7、x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.     类型三 函数图像的画法及应用例3 对于函数f(x)=x2-2

8、x

9、.(1)判断其奇偶性,并指出图像的对称性;(2)画此函数的图像,并指出单调区间和最小值.       反思与感悟 92017-2018学年高中数学北师大版必修1学案画函数图像的主要方法有描点法和先研究函数性质再根据性质画图,一旦有了函数图像,可以使问题变得直观,但仍要结合代数运算才能获得精确结果.跟踪训练3 

10、已知f(x)为定义在R上的奇函数,且f(x)=f(2-x),当x∈[0,1]时,f(x)=x.求x∈[-3,5]时,f(x)=的所有解的和.        1.已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若1和8的原像分别是3和10,则5在f作用下的像是(  )A.3B.4C.5D.62.已知集合P={x

11、y=},集合Q={y

12、y=},则P与Q的关系是(  )A.P=QB.PQC.PQD.P∩Q=∅3.函数f(x)=则f()的值为(  )A.B.-C.D.184.已知f(x),g(x)分别是定义在R上的偶函数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。