资源描述:
《3.1.3 组合与组合数 同步练习(Word版含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
3.1.3组合与组合数--2022-2023学年高二数学人教B版(2019)选择性必修第二册同步课时训练一、概念练习1.等5名学生进入学校劳动技能大赛决赛,并决出第一至第五名的名次(无并列名次).已知学生A和B都不是第一名也都不是最后一名,则这5人最终名次的不同排列有()A.18种B.36种C.48种D.54种2.中国作为世界上最大的棉花生产国和消费国,棉田面积在40万公顷以上有7个,分别为新疆、河南、江苏、湖北、山东、河北、安徽.共5位优秀学生分别前往新疆、湖北、山东、河北考察,用实际行动支持中国棉花.其中每个地方至少有一位同学去,不去河北但能去其他三个地方,四个地方都能去,则不同的安排方案的种数是()A.240B.126C.78D.723.现有4位学生干部分管班级的三项不同的学生工作,其中每一项工作至少有一人分管且每人只能分管一项工作,则这4位学生干部不同的分管方案种数为()A.18B.36C.72D.814.2月23日,以“和合共生”为主题的2021世界移动通信大会在上海召开,中国规模商用实现了快速发展.为了更好地宣传,某移动通信公司安排五名工作人员到甲、乙、丙三个社区开展宣传活动,每人只能去一个社区且每个社区至少安排一人,则不同的安排方法种数为()A.80B.120C.150D.1805.2022年北京冬奥会和冬残奥会给世界人民留下了深刻的印象,其吉祥物“冰墩墩”和“雪容融的设计好评不断,这是一次中国文化与奥林匹克精神的完美结合.为了弘扬奥林匹克精神,某学校安排甲、乙等5名志愿者将吉祥物“冰墩墩”和“雪容融”安装在学校的体育广场,每人参与且只参与一个吉祥物的安装,每个吉祥物都至少由两名志愿者安装.若甲、乙必须安装不同的吉祥物,则不同的分配方案种数为( )A.8B.10C.12D.14二、能力提升8
16.在北京冬奥会期间,云顶滑雪公园的“冰墩墩”凭借着“‘冰墩墩’蹦迪‘冰墩墩’扫雪”等词条迅速出圈.比赛期间,每场比赛观众到场后,“冰墩墩”都会走上看台,结合现场的舞蹈表演、互动游戏,通过舞动肢体,做出各种可爱的造型,活跃现场气氛.云顶滑雪公园设置了3个“结束区”,共安排了甲、乙、丙、丁4名“冰墩墩”表演人员,每个“结束区”至少有1个“冰墩墩”表演,则可能的安排方式种数为()A.18B.36C.72D.5767.重阳节是我国民间的传统节日.某校在重阳节当日安排6位学生到3所敬老院开展志愿服务活动,要求每所敬老院至少安排1人,则不同的分配方案种数是()A.540B.564C.600D.720(多选)8.为了提高教学质量,省教育局派5位教研员去某地重点高中进行教学调研,现知该地有3所重点高中,则下列说法正确的有()A.每个教研员只能去1所学校调研,则不同的调研方案有243种B.若每所重点高中至少去一位教研员,则不同的调研安排方案有150种C.若每所重点高中至少去一位教研员,则不同的调研安排方案有300种D.若每所重点高中至少去一位教研员,且甲、乙两位教研员不去同一所高中则不同的调研安排方案有有114种9.第24届冬奥会于2022年2月4日在中国北京市和张家口市联合举行.甲,乙等5名志愿者计划到高山滑雪、自由式滑雪、短道速滑和花样滑冰4个比赛区从事志愿者活动,则下列说法正确的有()A.若短道速滑赛区必须安排2人,其余各安排1人,则有60种不同的方案B.若每个比赛区至少安排1人,则有240种不同的方案C.安排这5人排成一排拍照,若甲、乙相邻,则有42种不同的站法D.已知这5人的身高各不相同,若安排5人拍照,前排2人,后排3人,且后排3人中身高最高的站中间,则有40种不同的站法10.某大型商场有三个入口,春节过后,客流量大增,为做好防疫工作,拟增派6人去入口处为顾客测体温,则下列选项正确的是()A.若在正式上岗前,6个人自主选择去一个入口处进行观摩学习,则有216种不同的选择结果8
2B.若每个入口派2人,则有90种不同的选派方案C.若两个入口各派1人,一个入口派4人,则有180种不同的选派方案D.若一个入口派1人,一个入口派2人,一个入口派3人,则有360种不同的选派方案11.将16个完全相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中球的个数不小于它的编号,则不同的放法种数为________.12.某县为巩固脱贫攻坚的成果,选派4名工作人员到2个村进行调研,每个村至少安排一名工作人员,则不同的选派方式共有______种(用数字作答).13.小红同学去买糖果,现只有四种不同口味的糖果可供选择,单价均为一元一颗,小红只有7元钱,要求钱全部花完且每种糖果都要买,则不同的选购方法共有______种.(用数字作答)14.回答下列问题(1)用0,2,4,6,8这五个数字可以组成多少个不同且无重复数字的四位数?(2)将5件不同的礼物分给甲1件,乙、丙各2件,试问有多少种不同的分配方法?15.男运动员6名,女运动员4名,其中男、女队长各1名.现选派5人外出参加比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)队长中至少有1人参加;(3)既要有队长,又要有女运动员.8
3答案以及解析1.答案:B解析:由题意,甲、乙都不是第一名且不是最后一名;故先排乙,有3种情况;再排甲,有2种情况;余下3人有种排法.故共有种不同的情况.故选:B.2.答案:C解析:根据题意,分3种情况讨论:①三人中有2人分到同一组,②三人中一人与中一人分到同一组,③两人分到同一组,由加法原理计算可得答案.解:根据题意,要求每个地方至少有一位同学去,需要先将5人分为4组,即在5人中,有2人需要分到同一组,分3种情况讨论:①三人中有2人分到同一组,有种安排方法,②三人中一人与中一人分到同一组,有种安排方法,③两人分到同一组,有种安排方法,则有种安排方法.故选:C.3.答案:B解析:将四人分为三组有种方案;分好的三组全排列,三项安排不同的学生有种方案,根据分步计数原理知总共有种方案.故选:B4.答案:C8
4解析:先将五名工作人员分成三组,有两种情况,分别为“”和“”,共有种不同的分法,再将这三组分给甲、乙、丙三个社区开展宣传活动,则不同的安排方法种数为.5.答案:C解析:甲和乙必须安装不同的吉祥物,则有种情况,剩余3人分两组,一组1人,一组2人,有,然后分配到参与两个吉祥物的安装,有,则共有种,故选:C.6.答案:B解析:先分3组,有种分组的方案:再分配,有种分配的方案,则可能的安排方式种数为,故正确选项为B.7.答案:A解析:根据题意,三所敬老院可能的分配有4,1,1;1,2,3;2,2,2三种情况;如果按4,1,1分配,则有种;若按1,2,3分配,则有种;若按2,2,2分配,则有种,所以共有种.故选:A.8.答案:ABD解析:对于A选项,每位教研员有三所学校可以选择,故不同的调研安排有种,故A正确;对于B,C选项,若每所重点高中至少去一位教研员,则可先将五位教研员分组,再分配,五位教研员的分组形式有两种:3,1,1;2,2,1,8
5分别有,种分组方法,则不同的调研安排有种,故B正确,C错误;对于D选项,将甲、乙两位教研员看成一人,则每所重点高中至少去一位教研员,且甲、乙两位教研员去同一所高中的排法有种,则甲、乙两位教研员不去同一所高中的排法有种,D正确.故选:ABD.9.答案:ABD解析:若短道速滑赛区必须安排2人,其余各安排1人,则先从5人中任选2人安排在短道速滑赛区,剩余3人在其余三个比赛区全排列,故有种,A正确;若每个比赛区至少安排1人,则先将5人按“2,1,1,1”形式分成四组,再分配到四个岗位上,故有种,B正确;若甲、乙相邻,可把2人看成一个整体,与剩下的3人全排列,有种排法,甲、乙两人相邻有种排法,所以共有种站法,C错误;前排有种站法,后排3人中最高的站中间有种站法,所以共有种站法,D正确.故选:ABD.10.答案:BD解析:A.每人各有3种选择,故有(种)不同的选择结果,所以A错误.B.每入口各两人,先从6人中抽取2人去第一个入口,有种不同的选派方案;再从剩下的4人中抽取2人去第二个入口有种不同的选派方案,剩下的人去第三个入口,所以共有(种)不同的选派方案,所以B正确.C.两个入口各派1人,一个入口4人,则先从6人中抽取4人组合到一起,有种不同的方案;再把抽出的4人当成一个元素与另外2人全排,有种方案,所以共有(种)不同的选派方案,所以C错误.8
6D.一入口1人,一入口2人,一入口3人,则先从6人中抽取1人,有种不同的方案;再从剩下的5人中抽出2人组合到一起,有种不同的方案;再把抽出的2人当成一个元素把剩下的3人当成一个元素和最开始抽出的人全排有种方案,所以共有(种)不同的选派方案.所以D正确故选:BD.11.答案:84解析:先在编号为1,2,3,4的四个盒子内分别放0,1,2,3个球,再将剩下的10个小球分成四份分别放入编号为1,2,3,4的盒子里.10个球之间有9个空隙,选出3个空隙放入隔板,所以有种放法.故答案为:84.12.答案:14解析:每个村选派2名工作人员的方式共有种方式,一个村选派3名工作人员,另一个村选派1名工作人员共有种方式,所以不同的选派方式共有种方式,故答案为:14.13.答案:20解析:由题得小红要买7颗糖果,把7颗糖果看作7个相同的小球,排成一横排,它们产生6个空位,从六个空位里选三个空位,插入三块隔板,隔板不能放在两端,共有种方法,所以不同的选购方法共有20种.(如果这一横排为:小球,小球,隔板,小球,隔板,小球,小球,隔板,小球,小球,则代表第一种糖果买2颗,第二种糖果买1颗,第三种糖果买2颗,第四种糖果买2颗).故答案为:20.14.答案:(1)96;(2)30种.解析:(1)第一步,千位数字有4种填法;第二步,百位数字有4种填法;第三步,十位数字有3种填法;第四步,个位数字有2种填法,8
7故这五个数字可以组成个不同且无重复数字的四位数.(2)先把1件礼物分给甲,有种方法,再从剩下的4件礼物中任选2件分给乙,有种方法,最后剩下的2件分给丙,所以一共有种不同的分配方法.15.答案:(1)(2)(3)解析:(1)分两步完成:第一步,选3名男运动员,有种选法;第二步,选2名女运动员,有种选法.由分步乘法计数原理可得,共有(种)选法.(2)方法一(直接法)可分类求解:“只有男队长”的选法种数为;“只有女队长”的选法种数为;“男、女队长都入选”的选法种数为,所以共有(种)选法.方法二(间接法)从10人中任选5人有种选法,其中不选队长的方法有种.所以“至少有1名队长”的选法有(种).(3)当有女队长时,其他人任意选,共有种选法;当不选女队长时,必选男队长,共有种选法,其中不含女运动员的选法有种,所以不选女队长时的选法共有种.所以既要有队长又要有女运动员的选法共有(种).8