E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -

E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -

ID:81816664

大小:8.53 MB

页数:12页

时间:2023-07-21

上传者:U-14522
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第1页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第2页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第3页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第4页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第5页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第6页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第7页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第8页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第9页
E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -_第10页
资源描述:

《E ffi cient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid - Wang et al. - 2021 -》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleEfficientRegulationoftheBehaviorsofSilkFibroinHydrogelviaEnzyme-CatalyzedCouplingofHyaluronicAcidLinWang,FeiyuWang,BoXu,ManZhou,YuanyuanYu,PingWang,*andQiangWangCiteThis:Langmuir2021,37,478−489ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Puresilkfibroin(SF)hydrogelexhibitspoorelasticityandlowwaterretentionability,owingtothecompactcrystallinestructureandhighcontentofhydrophobicaminoacids.Herein,acompositedouble-networkhydrogelofSFandtyramine-modifiedhyaluronicacid(mHA)wasconstructed,viathelaccase-catalyzedcouplingreactionsbetweenthephenolichydroxylgroupsfromSFandmHAchains.TheobtainedhydrogelexhibitsimprovedstructuralstabilityandflexibilitycomparedtopureSFhydrogel.Meanwhile,theswellingratio,mechanicalproperty,drugloading,andreleasebehaviorscanbereadilyregulatedbyalcoholization,alteringpHvalue,andionicstrengthofsoakingsolutions.IncreasingpHvaluespromotedtheswellingcapacityofSF/mHAhydrogel,resultinginanefficientloadingofcationicdrugsandsustainedreleaseofanionicdrugsaswell.Theadditionofinorganicsaltsreducedelectrostaticrepulsioninthehydrogelscaffold,accompanyingwithanoticeableimprovementoftoughness.Furthermore,alcoholtreatmentinducedconformationchangesoffibroinprotein,andthecompositehydrogelachievedahigherfractureandimprovedelasticity.Thepresentworkprovidesabiologicalalternativetoregulatethemechanicalbehavior,drugloading,andsustainedreleasecapacityoftheSF-basedhydrogel.■INTRODUCTIONgastrointestinaltract,inflamedtissue/wounds,andtheextrac-18Asamaterialwithexcellentbiocompatibilityandbiodegrada-ellulartumorenvironment.Utilizationofhydrogelascarrierstion,1,2silkfibroin(SF)isobtainedfromdegummedBombyxnotonlyachievesaslow-releaseeffectbutalsoprotectsthedrugmorisilkwormsilkandmainlycomposedofglycine,alanine,fromharmfulenvironments,suchasthepresenceofenzymesin3,4theintestineandthelowpHvalueinthestomach.19serine,andtyrosine.AnumberofsilkpolymorphsconstituteDownloadedviaUNIVOFCAPETOWNonMay14,2021at17:34:15(UTC).thecrystallineregionofSFcontainingα-helixandβ-sheetNevertheless,thehydrogelspreparedfrompureSFhavethe5shortcomingssuchasunsatisfactorymechanicalpropertiesandstructures,whichendowstheSFmaterialswithcertain6poorswellingperformance,mainlyowingtothehighcontentofmechanicalproperties.Inaddition,molecularconformation7ofSFiseasilyaffectedbyexternalconditions,suchaspH,hydrophobicaminoacidsandcompactnessofcrystallineSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.8920organicsolvents,andsalt.Forinstance,theadditionofethanolregions,whichlimitstheirfurtherapplications.intosilksolutionwouldinducesilkmoleculestochangeintoβ-Hyaluronicacid(HA),asanaturalglycosaminoglycanthatsheetstructures,10whichisbeneficialtotheformationofSF21ubiquitouslyexistsintheextracellularmatrix,hasbeenwidelymaterialswithincreasedstiffness.Morerecently,SFhasbeenusedinhydrogelpreparationbecauseofitsinherentwidelyutilizedinthebiomedicalfieldsuchasderivedscaffoldsbiocompatibility,biodegradability,andgelationproperty.2211foradhesionandgrowthofcells,hydrogelsfortreatmentofMoreover,carboxylgroupsinHAchainsareavailableforionic12spinalcordinjury,andflexiblebiosensorsforthemonitoringofinteractions,bioconjugation,targeteddrugrelease,23and13metabolites.hydrogenbondingtocombinewithlargeamountsofwater.24Amongthereportedbiomaterials,hydrogelsplayanMeanwhile,pHvalue,ionicstrength,andothersoakingimportantroleinthecurrentdrug-deliverytechniqueswitha14,15three-dimensionalnetworkfordrugloading.Inaddition,therateofthetherapeuticagentreleasecanbecontrolledbytheReceived:October28,2020structuralchangesofhydrogels.16Inparticular,pH-andsalt-Revised:December11,2020responsivehydrogelsaremostlystudiedbecausebothPublished:December24,2020parametersareimportantenvironmentalfactorsinphysiological17andchemicalsystems,especiallyindrugdeliveryfields.ThepHvariationsexistwithinthehumanbodysuchasthe©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c03136478Langmuir2021,37,478−489

1Langmuirpubs.acs.org/LangmuirArticleFigure1.SchematicdiagramoftheenzymaticpreparationofSFhydrogelanditsresponsestoacid,alkali,andalcohols[(A)SFsolutionpreparation;(B)HAmodificationusingTAandEDC/NHS;(C)enzymaticcouplingofmHAontoSF;and(D)responsestosoakingconditions].conditionscanaffectthestatusofHAhydrogelsbecausetheofCaCl2/CH3CH2OH/H2Oatamolarratioof1:2:8and70°Cfor3h.carboxylgroupsareionizedathighpHandprotonatedatlowAftercompletedissolution,theobtainedSFsolutionwasdialyzedpH.25,26againstdeionizedwatertoremovetheresidualsaltanddetermineitsconcentrationusingaweighingmethod.Morerecently,greatprogressonenzyme-mediatedregulationTyramine-modifiedhyaluronicacid(mHA)waspreparedviaEDC-ofhydrogelsisachieved,likeperoxidase-assisteddevelopingsilk3227andNHS(EDC/NHS)-mediatedgraftingofTAontoHAchains.Aproteinhydrogelinbiofunctionalizedmicrofluidicsystems,compositehydrogelofSFandmHAwaspreparedusing0.2U/mLphosphorylase-catalyzedpreparationofpH-responsiveampho-laccase,30g/LSF,and15g/LmHAintheratioof2:1.Eachmixture28tericglycogenhydrogels,andphosphatase-regulatedhealablesolutioncontainingdifferentratiosofSFtomHAwastransferredinto29polymerichydrogelsforself-repairing.Laccase(EC.1.10.3.2)theTefloncontainerswithholesof2cminheightand2cmindiameter,cancatalyzetheoxidationofphenolichydroxylgroupsintothenincubatedat50°CandpH5toformSF/mHAhydrogels.Foractivefreeradicals,resultingintheformationofcross-linkscomparison,single-componenthydrogelsofSForHAcatalyzedbybetweenphenolicsubstrates.30AsshowninFigure1,tyrosinelaccasewerealsopreparedaccordingtotheabovementionedmethod.residuesinSFandtyramineinmHAareenzymaticallyoxidizedExplorationoftheMolecularWeightChangesduringtheLaccase-CatalyzedProcess.TA+Lac,mHA+Lac,SF+Lac,andSFinthepresenceofoxygen,thenthegeneratedradicalscouple+mHA+LacaredefinedasthemixturesoflaccasewithTA,mHA,SF,togetherandformdifferentcross-linksbetweenSFchains(SF-SF,andmHA,respectively.MolecularweightdistributionofTA,TA+SF),mHAchains(mHA−mHA),andtwodifferentchains(SF-Lac,mHA,mHA+Lac,andHAat10g/Lwasmeasuredbysize31mHA).Basedonthepreviouswork,theresponsivenessoftheexclusionchromatography(SEC),respectively,usingaHPLCobtainedhydrogelstoanumberofphysiologicalstimulus,suchinstrument(WatersE2695,Waters,USA)andBioSuite450SECaspH,ionicstrength,andalcoholization,iswellinvestigated.column(Waters,USA).Themobilephasecontaining0.3mol/LNaClWiththesecharacteristics,thedrugloadingandreleasebehaviorand50mmol/LsodiumphosphatebuffersolutionsatpH7.0wasusedofhydrogelcanberegulatedbychangingenvironmentalastheeluent,withaflowrateof0.5mL/min.SECprofilesofthedifferentsampleswereascertainedat214nm/280nmwithanUV/visconditions,whichexpandstheapplicationperformancesofthedetectorconnectedtotheSECsystem.SF-basedhydrogels.ThesamplesofSF,SF+Lac,SF+mHA,andSF+mHA+Lacat5g/LwerealsoexaminedbySECattheabsorbanceof280nm.Sodium■MATERIALSANDMETHODSdodecylsulfate-polyacrylamidegelelectrophoresis(SDS-PAGE)wasMaterials.DegummedrawB.morisilkfibersweresuppliedbyfurtherusedtoevaluatethechangesinmolecularweightoftheseXinyuanSilkCo.,Ltd.(Nantong,China).LaccasefromTrametessamples.Eachfibroinsolutionwasmixedwithloadingbuffer(4x/2-versicolor,withanactivityof0.5U/mg,wasprovidedbySigma-Aldrich.thioethanol=9:1)atthevolumeratioof3:1,thenheatedfor10minatSodiumhyaluronate,withthemolecularweightof3−10and10−10090°Cpriortothemeasurement.SDS-PAGEproteinstandardkDa,wasprovidedbyBloomageBiotechnologyCo.,Ltd.(Jinan,(Beyotime,China)wasusedasamolecularweightmarker.ProteinChina).Tyraminehydrochloride(TA),1-(3-dimethylaminopropyl)-3-bandswerestainedwithCoomassieBrilliantBlueR250forvisual-ethylcarbodiimidehydrochloride(EDC),andN-hydroxysuccinimideization.(NHS)werepurchasedfromAladdinReagentCo.Ltd.(Shanghai,MorphologicalObservation.Morphologiesofthefreeze-driedChina).TrypanblueandmethylenebluewerepurchasedfromMacklinhydrogelsampleswerecharacterizedusingaSU-1510scanning(Shanghai,China).electronmicroscope(HITACHI,Japan).EachsamplewasmountedPreparationofSFSolution,Modified-HASolution,andSF-g-onanaluminumdevicefilledwithnitrogenandsputter-coatedwithamHAHydrogels.Degummedsilkfibersweredissolvedinthesolutionthinlayerofgoldpriortoscanning.Theporosityoffreeze-dried479https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

2Langmuirpubs.acs.org/LangmuirArticleFigure2.MolecularweightdistributionofTAandmHAat214nm(a)and280nm(b)beforeandafterlaccasetreatments.33sampleswasdeterminedbyliquiddisplacement.Briefly,asamplewasafteralcoholtreatments,withCuKαradiationoperatingat2.2kWinimmersedintheknownvolume(V1)ofhexaneinagraduatedcylindertherange5−45°atascanrateof5°/min.forapproximately30min,andthetotalvolumeofthehexaneandtheLoadingandReleasingDrugBehaviorsofHydrogels.hexane-impregnatedscaffoldwasrecordedasV2.Finally,thehexane-Spectrophotometryisasimplewaytoevaluatethedrugloadingandimpregnatedscaffoldwasremovedfromthecylinder,andtheresidualreleaseeffectsofthecompositehydrogels.ThealcoholizedandhexanevolumewasrecordedasV3.Theporositywascalculatedbyeq1untreatedhydrogelswiththeoriginalmassofmwereplacedintheacidictrypanbluesolution(pH2)andalkalinemethylenebluesolutionVV13−(pH12),respectively.TheoriginalvolumeofV1wasrecorded,andtheporosity(%)=×100%VV23−(1)massconcentrationofρ1wascalculatedaccordingtoeqs3and4,respectively.After24hofincubation,theremainingvolumeandtheSwellingRatioandMechanicalPropertyTestingofthecorrespondingconcentrationofthemodeldrug(i.e.,trypanblueorHydrogels.TodeterminetheeffectsofthepHvalue,ionicstrength,methyleneblue)weremeasuredandrecordedasV2andρ2,respectively.andalcoholconcentrationontheswellingratiosandmechanicalTheloadingamountofmodeldrugsinthehydrogelscanbecalculatedpropertiesofthehydrogels,eachsamplewastreatedwithacid,alkali,accordingtoeq5.CaCl2,NaCl,andalcohol,respectively.Theswellingratioofthe2preparedhydrogelwasmeasuredbyagravitationalmethod.Briefly,they1=+57.01429xR10.00037429(=0.9999)(3)hydrogelsamplewiththeinitialweightofm1wasimmersedinthe2preparedsolutionsat25°Cfor24h,thentakenoutandweigheditsy=+172.5xR0.0228(=0.9999)(4)22massasm2aftercompletelyremovingthesurfacewaterusingtheabsorbentpaper.Theswellingratiosweresubsequentlycalculatedwherey1andy2aretheabsorbanceat580nmand665nmandx1andx2accordingtoeq2.representtheconcentrationoftrypanblueandmethyleneblue,respectively.mm21−swellingratio(%)=×100%ρρVV−m(2)Theloadingamountofmodeldrug(mg/g)=11221m(5)Mechanicalpropertiesoftheuntreated,swollen,andalcoholizedwhereρ1andρ2arethemassconcentrationofthesolutionbeforeandhydrogelsweretestedusingaMIT-1universalmaterialtestingmachineafterdrugloading.(SanfengCo.,China),andthecorrespondingcompressivepropertiesToinvestigatethedrugreleasebehavioroftheSF/mHAhydrogels,wererecordedatroomtemperature,withacompressionspeedof5thehydrogelsamplescarryingtrypanblueormethyleneblueweremm/min.Furthermore,cycliccompressionexperimentswerealsoplacedin15mLofPBSsolutionsunderdifferentreleasingconditions,performedonthealcoholizedanduntreatedhydrogels.TheslopeofasshowninTableS1(SupportingInformation).Subsequently,2mLofstress−straincurveswithintheelongationof10−15%isrecordedasthethesamplesolutioncontainingthereleaseddrugwastakenatregularinitialcompressivemodulus,whilethefractureenergyisobtainedbyintervals,andanother2mLoffreshPBSbufferwasaddedintothebath.calculatingtheareacoveredbythecurveatthebreakingpoint.Thepercentageofdrugreleasewascalculatedbyeq6,andthetotalRheologicalCharacterization.RheometerPhysicaMCR301releaseamountofmodeldrugwascalculatedaccordingtoeq7.(AntonPaar,Austria)wasusedtotesttherheologyofSF-g-mHAhydrogelsaftertreatmentwithdifferentconcentrationsofsaltsolutions.n−121×∑1CCin+×5Thetestusedaparallelplatewithadiameterof25mmwiththesampleDrugreleasepercentage(%)=×100%wplacedonthesampletable,whilethedistancebetweenthesampletable(6)andtheplatewas1.5mm.Thetestmethodsusedwerefrequencysweep34whereCandCaretheconcentrationsofmodeldrugforthetaken(ω=0.1−100rad/s,γ=5%).Thestoragemodulus(G′)andlossinmodulus(G″)wererecorded.solutionandtheremainingsolution,respectively,nrepresentstheDSCandXRDAnalyses.Thermalpropertiesofthefreeze-driedsamplingtime,andw(mg)meansthetotaldrugloadingamount.hydrogelswererecordedonadifferentialscanningcalorimeter(TAm2Q200,America)ataheatingrateof10°C/minintherangeof50−400Thereleaseamountofmodeldrug(mg/g)=×100%m(7)°C.AD8X-raydiffractometer(BrukerAXS,Germany)wasusedtoexplorethecrystalstructurechangesofthehydrogelsamplesbeforeandwherem2isthetotalreleaseamountandmisthequalityofthehydrogel.480https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

3Langmuirpubs.acs.org/LangmuirArticleFigure3.MolecularweightdistributionofSFandmHAbasedondifferenttreatments[(a)SEC;(b)SDS-PAGE:(1)SF,(2)SF+Lac,(3)SF+mHA,and(4)SF+mHA+Lac].Figure4.SwellingratiosofthehydrogelsunderdifferentpHconditions(a)andthecorrespondingmechanicalproperties[(b)SF+Lac,(c)SF+mHA+Lac,and(d)mHA+Lac].■RESULTSANDDISCUSSIONbedeterminedbySECanalysis,accordingtothenewlyformedMolecularWeightDistributionofSFandmHAafteramidebondsat214nmandthephenolicringstructureat280LaccaseTreatment.Afterlaccase-catalyzedoxidationofTAnm,respectively.Theearlierthepeaktimeappears,thelarger35andmHA,thechangesinthemolecularweightdistributioncanthemolecularweightitis.ItcanbeseenfromFigure2thatthe481https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

4Langmuirpubs.acs.org/LangmuirArticleFigure5.Swellingratiosofthehydrogelsafterincubationwithdifferentconcentrationsofsalt,andthecorrespondingmechanicalpropertyofSF+mHA+Lac[(a,b)NaCl;(c,d)CaCl2].sampleofmHA+Lachasthelargestmolecularweight,followedroleoflaccaseintheformationofcompositehydrogels.ThanksbymHA,HA,TA+Lac,andTA.TheearlierpeakofTA+Lactothefacilepreparation,thecompositehydrogelofSFandmHAcomparedwithTAshowsthatthemolecularweightofTA+Laccanbefabricatedintodiverseformsusingdifferentmoldsincreasedafterlaccasecatalysis.Inparticular,HAinFigure2b(FigureS1c).Furthermore,itseemsthattheobtainedhydrogelshasnodetectableabsorptionpeak,whilemHAexhibitsanaretoughandflexible,whichcanendurelarge-scaledeformation,obviouspeakat280nm,revealingthatTAmoleculeswereasshowninMoviesS1andS2(SupportingInformation).successfullygraftedontoHAchainsduringthelaccaseSurfaceMorphologyandPorosityoftheSFHydrogelstreatment.BasedonDifferentTreatments.ToobservethestructuralFigure3adepictstheretentiontimecurvesofdifferentSFmorphologyofthecompositehydrogels,thefreeze-driedsamples.ForthesamplesofSFandSF+mHA,theinitialpeaksamplesweresubjectedtoscanningelectronmicroscopytimeobviouslymovesforwardafterlaccasetreatment,especially(SEM)observationandporositymeasurements.Itcanbeseenfortheformer,indicatingtheoccurrenceofefficientcross-fromFigureS2athatthesampleswithdifferentcompositionslinkingbetweenSFandmHAmolecules.TheresultsfromSDS-revealdistinctmicrostructures.ThesamplesofSF+LacandSFPAGEareconsistentwiththoseofSEC,asshowninFigure3b,+mHA+LacrepresentmoreregularporestructuresandtighterthetopofSF+LacandSF+mHA+LaclanesexhibitsadarkerstructurescomparedtoSFandSF+mHA,owingtotheappearancecomparedtoothers,implyingthattheyhavelargermolecularweight.36Therefore,itisfeasibletoprepareadouble-formationofcross-linkingstructuresduringthelaccasenetworkhydrogelbylaccase-catalyzedcross-linkingofHAandtreatment,asshowninFigure1.Specially,mHAhasnostableSFchains.secondaryandtertiarystructuresasSF,indicatingthatitcan37FormabilityoftheSFhydrogelswithandwithoutlaccasehardlyformthescaffoldwithuniformporousstructures.catalysiswastestedbythevialinversionmethod.AscanbeseenFigureS2balsoprovidestheporosityoftheabovementionedinFigureS1a,allmixturesolutionsformsolid-likehydrogelsinmaterials.TheporosityofpuremHAisonly30%,whichisthepresenceoflaccase,regardlessoftheratiosofSFtomHA.InsignificantlylowerthanotherscaffoldscontainingSF.Thecontrast,themixedsolutionsremainintheoriginalliquidstateporosityofSF+LacandSF+mHA+Lacisalmostthesame,withoutlaccase(FigureS1b).TheresultsemphasizethecrucialexhibitingabitlowerthanthoseofSFandSF+mHA,indicating482https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

5Langmuirpubs.acs.org/LangmuirArticleFigure6.DSC(a,b)andX-raypatterns(c,d)ofscaffoldslyophilizedfromuntreatedandalcoholizedhydrogels.thatformationofcross-linkingstructuresslightlyreducedthestructuresinthecompositehydrogel.Thecompressivemodulusporosity.andfractureenergyforthehydrogelsamplesarecalculatedandEffectsofpHConditionsontheSwellingBehaviorandshowninFigureS3(SupportingInformation).Aboveall,theMechanicalPropertyoftheHydrogels.ThecompositethreehydrogelsachieveacertainpHresponsiveness,amonghydrogelscontainionizablecarboxylandaminogroups,whichSF+mHA+Lacdisplaysthebestmechanicalpropertiesdifferentdegreesofswellingratioscanbeobtainedwhenonaccountofthedoublecross-linkedstructures.incubatinginacidicoralkalinesolutions.AsshowninFigure4a,EffectsofSaltsontheSwellingBehaviorandmHA+Lachydrogelhasthemaximumswellingratio,whiletheMechanicalPropertyoftheHydrogels.ChangingionicsampleofSF+LacachievestheminimumvalueunderthesamestrengthofincubationsolutionsmightinfluencetheswellingpHconditions,mainlybecauseofthetighterstructureofthebehaviorandmechanicalpropertyofthehydrogels.Asshowninfibroinprotein.Moreover,theswellingratiosofhydrogelsareFigure5a,c,theswellingratiosofhydrogelsgraduallydecreasestronglydependentonpHofthesurroundingsolutions.Forwiththeincreaseofionconcentrations,andalloftheswellingexample,thevolumeofhydrogelssignificantlyincreasedatpHratiosarelowerthanthosetreatedatpH7,especiallyforthe12,especiallyforthemHA+Lachydrogel,whichisattributedtosampleofmHA+Lacwhichillustratestheinhibitoryswellingthemutualrepulsionofnegativechargesofcarboxylgroupsinabilityofsaltions.TheswellingratiosofhydrogelsinCaCl238mHAchains.Onthecontrary,theionizationofcarboxylsolutionarelowerthanthoseinNaClsolution,owingtothatthegroupsinSFandmHAwasinhibitedatpH2,whichreducedthepositivelychargedCa2+canmoreefficientlyinteractwiththeswellingdegreeofthehydrogels.39negativelychargedfunctionalgroups(COO−)thanNa+.InFurthermore,theincreasingofswellingratiossignificantlyaddition,Ca2+andNa+ionscangraduallyinducethepartialdeterioratesthemechanicalpropertyofmHA+Lachydrogel.AsconformationtransitionofSFfromhelixformtoβ-sheet,and2+40,41canbeseeninFigure4b−d,fracturepointsofSF+LacandtheinductionabilityofCaismoreremarkable,mainlymHA+Lachydrogelsarebothreducedcomparedtothatoftheattributedtothereducedrepulsiveforcesandthenewlyformed42untreatedbecauseoftheincreasedswellingratios.Compara-chelatingstructures.tively,thehydrogelsofSF+mHA+LactreatedatpH2andpHAscanbeseeninFigure5b,d,withtheincreaseofsalt7revealbettertoughnessfortheirincreasedstrainsatfractureconcentrations,thestrainsatthebreakingpointofthehydrogelspoint,probablyowingtotheexistenceofdouble-networkincreaseaccordingly.Thestressandstrainatthefracturepoint483https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

6Langmuirpubs.acs.org/LangmuirArticleFigure7.Swellingratiosofthealcohol-treatedhydrogels(a),correspondingmechanicalpropertyofsampleSF+mHA+Lac(b),andtheconformationofmolecularchainsbeforeandafteralcoholization(c).ofthehydrogelstreatedwithCa2+aresignificantlyhigherthanfrom175.5to177.8°Ccanbedetected,whichcanbeascribedtothatwithNa+,exhibitingbettermechanicalproperties.FigurestheprecipitationofthemHAmolecularchains45andneedtobeS4andS5showthestress−straincurvesoftheothersalt-treatedfurtherexploredthroughX-raydiffraction(XRD)analysis.samples,themodulus,andfractureenergycorrespondingtoAccordingtothestudyofCuKα-irradiatedSFstructure,thestress−straincurves,respectively.ItcanbefoundthatthemaindiffractionpeaksofSilkIareataround12.2°,19.7°,24.7°,fractureenergyandsaltconcentrationstendtoincreaseand28.2°,andthemaindiffractionpeaksofSilkIIareataround46synchronously,mainlybecauseoftheincreaseinthecontent9.1°,18.9°,and20.7°.AscanbeseeninFigure6c,d,theofβ-sheetstructuresinducedbysaltionsandthedecreaseinuntreatedhydrogelsofSF+LacandSF+mHA+LaccontainmutualrepulsionbetweenHAmolecules.thediffractionpeaksofSilkIandSilkII,andthecalculatedFigureS6depictsthestoragemodulus(G′)andlossmoduluscrystallinityisabout5.15and8.80%,respectively.After(G″)ofthesalt-treatedhydrogelswiththefrequencysweep.Thealcoholization,thediffractionpeaksofSF+mHA+LacandresultsindicatethattheobtainedG′ofallcompositehydrogelsisSF+Lacareconcentratedat20.7°,whichrepresenttheβ-sheet43greaterthanG″,revealingtheelasticcharacteristics.Mean-structureofSilkII.Thecalculatedcrystallinitiesforthetwowhile,increasingsaltconcentrationsleadstocorrespondingsamplessignificantlyincreaseto17.15and21.79%,respectively,increaseinthestoragemodulus,whichissimilartotheverifyingthatalcoholtreatmenthasobviousinfluenceontheSF47abovementionedresultsoffractureenergy.Thisisbecauseconformation.Comparatively,theeffectsofalcoholizationonthatthenewlyformedβ-sheetstructurereducesthefluidityofthepatternofmHA+Lacarenotobvious,whichisconsistenttheentirechainsegmentandincreasesthestoragemoduluswiththeresultsoflittlechangesinthermodynamicproperties48simultaneously.mentionedabove.EffectsofAlcoholTreatmentontheThermodynamicsEffectsofAlcoholTreatmentontheSwellingBehaviorandCrystallinityoftheHydrogels.Figure6a,bshowstheandMechanicalPropertyoftheHydrogels.Swellingratiosdifferentialscanningcalorimetry(DSC)resultsoftheuntreatedofthehydrogelsamplestreatedwithdifferentmassfractionsofandalcoholizedhydrogels.Theendothermicpeaksfortheethanolwerealsomeasured,andtheresultsareshowninFiguresamplesofSF+LacandSF+mHA+Lacappearingat140.5°C7a.Itcanbeseenthatincreasingethanolconcentrationdoesand145°Cshifttohighertemperaturesat163.0°Cand182.4evidentlyaffecttheswellingbehaviorofthehydrogels,andthe°C,respectively,mainlyowingtotheconformationaltransitionswellingratioevendecreasestoanegativevalueafterimmersion44ofSFfromarandomcoiltoβ-sheetcrystallization.Asforthein75%ethanolsolution.ThisisbecauseethanolcanattractthesampleofmHA+Lac,aslightshiftoftheendothermicpeakwaterfromSFandmHAchainsbecauseofitsstrongpolarityand484https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

7Langmuirpubs.acs.org/LangmuirArticleFigure8.Loading−unloadingcyclesofSF+mHA+Lachydrogelbefore(a,b)andafterimmersionin75%ethanol(c,d).furtherinitiatestheaggregationofSFchainsandformβ-sheetapproaching60%,whilethealcoholizedsamplecanfullycrystallizationviatheinteractionsbetweenhydrophobicaminoreboundevenafterbeingcompressedto80%strain,revealing49,50acidsegments.Meanwhile,themechanicalpropertyofSF+thatalcoholizationendowsthecompositehydrogelwithmHA+Lachydrogeldisplaysasignificantimprovementattheimprovedmechanicalpropertybytheformationofenzymaticbreakingpointwhentheethanolconcentrationexceeds50%cross-links.(Figure7b).Stress−straincurvesofSF+LacandmHA+LacDrugLoadingandReleaseBehaviorsfortheHydrogelandthecorrespondingmodulusandfractureenergyarealsoofSF+mHA+LacunderDifferentConditions.BasedonshowninFigureS7.WiththeincreaseoftheethanolmasstheswellingbehaviorsofSF+mHA+Lachydrogelunderfraction,themechanicalpropertiesofhydrogelscontainingSFdifferentconditionslikeacid,alkali,salt,andalcohol,wetooktheareobviouslyenhanced,whichismainlymanifestedintheadvantagesofitspH-andion-sensitivepropertiestocarryoutincreaseoffractureenergy.Theconformationchangesbeforedrugloadingandreleasingexperiments.ToincreasetheamountandafteralcoholizationareproposedinFigure7c,andtheblueofthemodeldrugintothecompositehydrogel,drugloadingoffoldintheellipsedottedlineindicatesthenewlyformedβ-sheetanionictrypanblueandcationicmethylenebluewasperformedstructureofSFwhiletheredfoldindicatesthedehydrationandatpH2andpH12,respectively,ensuringthatmoredrugscanaggregationofthemHA.bindtothehydrogelswithoppositechargesviaelectrostaticTofurtherexplorethemechanicalpropertyofthealcoholized51forces.sampleofSF+mHA+Lac,cycliccompressionexperimentsFigure9a,bshowsthechangesintheconcentrationrateswereperformedundertheconditionsofthespecifiedstrain(50%)andgraduallyincreasingstrains(20%−80%),respec-duringthedrug-loadingprocess.Ascanbeseen,extendingtively.Whenthemaximumstrainissetto50%,asshowninincubationtimeleadstoaremarkabledecreaseintheresidualFigure8a,c,thedissipatedenergyfromthefirstcycleisconcentrationratesoftrypanblueandmethyleneblue,significant;meanwhile,thestressforthealcoholizedsampleisespeciallyfortheuntreatedhydrogels,reachingapproximatelynoticeablyhigherthanthatoftheuntreated,reaching15%and5%,respectively.Theamountofdrugloadedintheapproximately250kPa.Figure8b,dshowsthecyclicstress−hydrogelscanbedepictedinFigure9c.Forthealcoholizedstraincurvesbasedonthestrainfrom20to80%.Itcanbeseenhydrogelsample,theloadingamountofthemodeldrugisabitthattheuntreatedhydrogelbreakswhenthestrainislowerthanthatoftheuntreated,mainlybecauseofthe485https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

8Langmuirpubs.acs.org/LangmuirArticleFigure9.Drugloadingeffectsoftrypanblue(a)andmethyleneblue(b)intothehydrogelofSF+mHA+Lac,andtheloadingamountofmodeldrugs(c).formationofβ-sheetsinthecrystallineregionsandthetighterpatternsundertheacidicoralkalineconditions.Theamountsofstructurecausedbyalcoholization.themodeldrugsreleasedfromthecompositehydrogelareDrugreleaseexperimentswereconductedbycontrollingthesummarizedinFigure10c,ascanbeseen,thesustainedreleasepHvaluesandsaltconcentrations,andtheresultsareshownineffectdecreasestoacertainextentaftersaltandalcoholFigure10.ItcanbeseeninFigure10a,bthatthepHvalueofthetreatments.Furthermore,thepercentagesofdrugreleasetothesoakingsolutionshasagreatinfluenceontheamountofdrugdrugloadingfordifferentsamplesaredepictedinFigure10d,released.Theamountoftrypanbluereleasedfromthehydrogelanditisdifficultforallloadeddrugstobereleasedsustainably,reachedthemaximumatpH12,owingtothatthetotalamountwhichisrelatedtotheintermolecularforcesbetweenthemodelofcarboxylgroupsinthecompositehydrogelincreasesunderdrugandSFormHAmolecules.Accordingtotheresultsofalkalineconditions,whichaccordinglyincreasestherepulsionloadingandreleasebehaviorsforthedifferentmodeldrugs,itbetweenthehydrogelandtheloadeddrugs(Figure10e).ForcanbedrawnthattheloadingandreleaseeffectsofcationicthehydrogelsampleundertheconditionofpH12+NaCl,thedrugsaremoreremarkable,whichisrelatedtothehighcontentelectrostaticrepulsionslightlydecreasesinthepresenceofsalt,ofnegativechargesinthecompositehydrogel.Therefore,itcanthusthedrugreleasepercentageisabitlowerthanthatofthebeusedasacarriertoloadcationicdrugslikeranitidinesampletreatedatpH12alone,reachingapproximately50%afterhydrochloride,whichmightprolongthereleasetimeofdrugin72hofincubation.stomachforbettertreatment.Asforthemodeldrugofmethyleneblue,anacidicconditionisconducivetothesustainedreleasefromthecompositehydrogel.■CONCLUSIONSThehighestreleaseeffectisobtainedatpH2,whichissuperiorWehavesuccessfullypreparedadouble-networkfibroin-basedtothesampletreatedwithpH2+NaClcondition.Thiscanbehydrogelsviathelaccase-catalyzedcouplingofmHA.Theinterpretedasthattheaminogroupsoffibroininthecompositecompositehydrogelhasgoodformability,porosity,andhydrogelareprotonatedandpositivelycharged,whichincreasestoughnesscomparedtopureSFandmHAhydrogelsandtheelectrostaticrepulsionbetweenthehydrogelandthecationicexhibitsdifferentresponsestoacid,alkali,salt,andalcoholdrug.AsshowninFigure10e,thecompositehydrogelsloadedsolutions.Briefly,thehydrogelswellsinalkalineorlow-withdifferenttypesofmodeldrugsexhibitdifferentreleaseconcentrationalcoholsolutionsandshrinksinacidic,salt486https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

9Langmuirpubs.acs.org/LangmuirArticleFigure10.Drugreleasepercentageoftrypanblue(a)andmethyleneblue(b)fromthedrug-loadedSF+mHA+Lac,releasedamountofmodeldrugs(c,d),andtheproposedloadingandreleasingmechanismunderdifferentpHvalues(e).solutions,orhigh-concentrationalcoholsolutions.Mechanicalfibroin-basedhydrogels,whichwillexpandtheapplicationsofandthermodynamicpropertiesofthecompositehydrogelaresilkfibroininthefieldsofbiomedicalmaterials.evidentlyimprovedafterincubatingwithethanol,owingtotheformationoftheβ-sheetstructureofSF.Thedrugloadingand■ASSOCIATEDCONTENTreleasingbehaviorsforthecompositehydrogelcanbewell*sıSupportingInformationcontrolledbychangingthepHvalueandsaltconcentrationofTheSupportingInformationisavailablefreeofchargeatsoakingsolutions.Undertheacidicconditions,thehydrogelhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c03136.exhibitshighefficacyofanionicdrugloadingandcationicdrugDifferenttreatmentsofhydrogelsforloadingandreleaseeffects.Conversely,thealkalineconditionsarefavorablereleasingdrugs;moldabilityofthemixtureofSFandforthecompositehydrogelstoloadcationicdrugsandreleasemHAandthemultipleshapesofthehydrogel;SEManionicdrugs.Thepresentworkprovidesanefficientwaytoimagesandporosityofthefreeze-driedscaffolds;modulusregulatethemechanicalanddrug-releasebehaviorsoftheandfractureenergycorrespondingtothestress−strain487https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

10Langmuirpubs.acs.org/LangmuirArticlecurvesofthedifferenthydrogelstreatedatdifferentpH(5)Motta,A.;Fambri,L.;Migliaresi,C.Regeneratedsilkfibroinfilms:anddifferentconcentrationsofNaCl,CaCl2,andethanolthermalanddynamicmechanicalanalysis.Macromol.Chem.Phys.2002,solution;frequencydependenceofdynamicstorage203,1658−1665.(6)Gholipourmalekabadi,M.;Sapru,S.;Samadikuchaksaraei,A.;modulus(G′);anddynamiclossmodulus(G″)ofSF-g-Reis,R.L.;Kaplan,D.L.;Kundu,S.C.Silkfibroinforskininjuryrepair:mHAhydrogelstreatedwithNaCl/CaCl2solutionswheredothingsstand?Adv.DrugDeliveryRev.2020,153,28−53.(PDF)(7)Qiao,X.;Miller,R.;Schneck,E.;Sun,K.InfluenceofpHontheMovieS1:GreatflexibilityofSF-g-mHAhydrogelaftersurfaceandfoamingpropertiesofaqueoussilkfibroinsolutions.Eur.alcoholtreatment(MP4)Phys.J.E2020,16,3695−3704.MovieS2:GoodmechanicalpropertyofSF-g-mHA(8)Zuo,B.;Liu,L.;Wu,Z.Effectonpropertiesofregeneratedsilkhydrogelwithoutanytreatments(MP4)fibroinfibercoagulatedwithaqueousmethanol/ethanol.J.Appl.Polym.Sci.2007,106,53−59.(9)Kim,U.-J.;Jaehyung,P.;Chunmei,L.;Hyoung-Joon,J.;Regina,■AUTHORINFORMATIONV.;David,L.K.Structureandpropertiesofsilkhydrogels.CorrespondingAuthorBiomacromolecules2004,5,786−792.(10)Shi,P.;Goh,J.C.H.Self-assembledsilkfibroinparticles:tunablePingWang−KeyLaboratoryofScienceandTechnologyofEco-sizeandappearance.Adv.PowderTechnol.2012,215−216,85−90.Textile,MinistryofEducation,JiangnanUniversity,Wuxi(11)Acharya,C.;Hinz,B.;Kundu,S.C.Theeffectoflactose-214122,People’sRepublicofChina;orcid.org/0000-conjugatedsilkbiomaterialsonthedevelopmentoffibrogenic0002-6566-8525;Phone:+86-510-85912007;fibroblasts.Biomaterials2008,29,4665−4675.Email:pwang@jiangnan.edu.cn;Fax:+86-510-85912009(12)Chen,S.;Liu,S.;Zhang,L.;Han,Q.;Liu,H.;Shen,J.;Li,G.;Zhang,L.;Yang,Y.Constructionofinjectablesilkfibroin/polydop-Authorsaminehydrogelfortreatmentofspinalcordinjury.Chem.Eng.J.2020,LinWang−KeyLaboratoryofScienceandTechnologyofEco-399,125795.Textile,MinistryofEducation,JiangnanUniversity,Wuxi(13)Xu,M.;Jiang,Y.;Pradhan,S.;Yadavalli,V.K.Useofsilkproteins214122,People’sRepublicofChinatoformorganic,flexible,degradablebiosensorsformetaboliteFeiyuWang−KeyLaboratoryofScienceandTechnologyofmonitoring.Front.Mater.2019,6,331.Eco-Textile,MinistryofEducation,JiangnanUniversity,Wuxi(14)Dong,Q.;Zhong,X.;Zhang,Y.;Bao,B.;Liu,L.;Bao,H.;Bao,C.;214122,People’sRepublicofChinaCheng,X.;Zhu,L.;Lin,Q.Hyaluronicacid-basedantibacterialBoXu−KeyLaboratoryofScienceandTechnologyofEco-hydrogelsconstructedbyahybridcrosslinkingstrategyforpacemakerTextile,MinistryofEducation,JiangnanUniversity,Wuxipocketinfectionprevention.Carbohydr.Polym.2020,245,116525.214122,People’sRepublicofChina(15)Liu,L.;Zhang,Y.;Yu,S.;Yang,Z.;He,C.;Chen,X.Dualstimuli-ManZhou−KeyLaboratoryofScienceandTechnologyofEco-responsivenanoparticle-incorporatedhydrogelsasanoralinsulinTextile,MinistryofEducation,JiangnanUniversity,Wuxicarrierforintestine-targeteddeliveryandenhancedparacellular214122,People’sRepublicofChinapermeation.ACSBiomater.Sci.Eng.2018,4,2889−2902.YuanyuanYu−KeyLaboratoryofScienceandTechnologyof(16)Eckmann,D.M.;Composto,R.J.;Tsourkas,A.;Muzykantov,V.Eco-Textile,MinistryofEducation,JiangnanUniversity,WuxiR.Nanogelcarrierdesignfortargeteddrugdelivery.J.Mater.Chem.B214122,People’sRepublicofChina2014,2,8085−8097.(17)Li,X.;Wang,Y.;Li,A.;Ye,Y.;Peng,S.;Deng,M.;Jiang,B.AQiangWang−KeyLaboratoryofScienceandTechnologyofnovelpH-andsalt-responsiveN-succinyl-chitosanhydrogelviaaone-Eco-Textile,MinistryofEducation,JiangnanUniversity,Wuxistephydrothermalprocess.Molecules2019,24,4211.214122,People’sRepublicofChina(18)Koetting,M.C.;Peters,J.T.;Steichen,S.D.;Peppas,N.A.Completecontactinformationisavailableat:Stimulus-responsivehydrogels:theory,modernadvances,andhttps://pubs.acs.org/10.1021/acs.langmuir.0c03136applications.Mater.Sci.Eng.,R2015,93,1−49.(19)Qiu,Y.;Park,K.Environment-sensitivehydrogelsfordrugNotesdelivery.Adv.DrugDeliveryRev.2012,64,49−60.Theauthorsdeclarenocompetingfinancialinterest.(20)Hong,Y.;Zhu,X.;Wang,P.;Fu,H.;Deng,C.;Cui,L.;Wang,Q.;Fan,X.Tyrosinase-mediatedconstructionofasilkfibroin/elastin■nanofiberbioscaffold.Appl.Biochem.Biotechnol.2016,178,1363−ACKNOWLEDGMENTS1376.ThisworkwasfinanciallysupportedbytheSixTalentPeaks(21)Burdick,J.A.;Prestwich,G.D.HyaluronicacidhydrogelsforProjectinJiangsuProvince(XCL-133),theNaturalSciencebiomedicalapplications.Adv.Mater.2011,23,H41−H56.FoundationofJiangsuProvince(BK20180631),andthe111(22)Liang,Y.;Zhao,X.;Hu,T.;Chen,B.;Yin,Z.;Ma,P.X.;Guo,B.Project(B17021).Adhesivehemostaticconductinginjectablecompositehydrogelswithsustaineddrugreleaseandphotothermalantibacterialactivityto■promotefull-thicknessskinregenerationduringwoundhealing.SmallREFERENCES2019,15,1900046.(1)Kundu,B.;Kurland,N.E.;Bano,S.;Patra,C.;Engel,F.B.;(23)Choi,K.Y.;Min,K.H.;Yoon,H.Y.;Kim,K.;Park,J.H.;Kwon,I.Yadavalli,V.K.;Kundu,S.C.Silkproteinsforbiomedicalapplications:C.;Choi,K.;Jeong,S.Y.PEGylationofhyaluronicacidnanoparticlesbioengineeringperspectives.Prog.Polym.Sci.2014,39,251−267.(2)Holland,C.;Numata,K.;Rnjak-Kovacina,J.;Seib,F.P.Theimprovestumortargetabilityinvivo.Biomaterials2011,32,1880−biomedicaluseofsilk:past,present,future.Adv.HealthcareMater.1889.2019,8,1800465.(24)Lee,E.J.;Kang,E.;Kang,S.-W.;Huh,K.M.Thermo-irreversible(3)Vepari,C.;Kaplan,D.L.SilkasaBiomaterial.Prog.Polym.Sci.glycolchitosan/hyaluronicacidblendhydrogelforinjectabletissue2007,32,991−1007.engineering.Carbohydr.Polym.2020,244,116432.(4)Jayawardane,D.;Pan,F.;Lu,J.R.;Zhao,X.Interfacialadsorption(25)Burke,S.E.;Barrett,C.J.Swellingbehaviorofhyaluronicacid/ofsilkfibroinpeptidesandtheirinteractionwithsurfactantsatthesolid-polyallylaminehydrochloridemultilayerfilms.Biomacromolecules2005,waterinterface.Langmuir2016,32,8202−8211.6,1419−1428.488https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

11Langmuirpubs.acs.org/LangmuirArticle(26)Peppas,N.;Bures,P.;Leobandung,W.;Ichikawa,H.E.(47)Wang,X.;Partlow,B.;Liu,J.;Zheng,Z.;Su,B.;Wang,Y.;Kaplan,Hydrogelsinpharmaceuticalformulations.Eur.J.Pharm.Biopharm.D.L.Injectablesilk-polyethyleneglycolhydrogels.ActaBiomater.2015,2000,50,27−46.12,51−61.(27)Zhao,S.;Chen,Y.;Partlow,B.P.;Golding,A.S.;Tseng,P.;(48)Lee,S.B.;Lee,Y.M.;Song,K.W.;Park,M.H.PreparationandCoburn,J.;Applegate,M.B.;Moreau,J.E.;Omenetto,F.G.;Kaplan,D.propertiesofpolyelectrolytecomplexspongescomposedofhyaluronicL.Bio-functionalizedsilkhydrogelmicrofluidicsystems.Biomaterialsacidandchitosanandtheirbiologicalbehaviors.J.Appl.Polym.Sci.2016,93,60−70.2003,90,925−932.(28)Takata,Y.;Yamamoto,K.;Kadokawa,J.-i.PreparationofpH-(49)Um,I.C.;Kweon,H.Y.;Lee,K.G.;Park,Y.H.Theroleofformicresponsiveamphotericglycogenhydrogelsbyα-glucanphosphorylase-acidinsolutionstabilityandcrystallizationofsilkproteinpolymer.Int.J.catalyzedsuccessiveenzymaticreactions.Macromol.Chem.Phys.2015,Biol.Macromol.2003,33,203−213.216,1415−1420.(50)Chen,J.P.;Chen,S.H.;Lai,G.J.Preparationand(29)Li,P.;Zhong,Y.;Wang,X.;Hao,J.Enzyme-regulatedhealablecharacterizationofbiomimeticsilkfibroin/chitosancompositenano-polymerichydrogels.ACSCent.Sci.2020,6,1507−1522.fibersbyelectrospinningforosteoblastsculture.NanoscaleRes.Lett.(30)Yuan,J.;Wang,L.;Xu,B.;Wang,P.;Yuan,J.;Yu,Y.;Deng,C.;2012,7,170.(51)Shen,C.;Shen,Y.;Wen,Y.;Wang,H.;Liu,W.FastandhighlyWang,Q.EnzymaticdepositionofPPyontocPEG-graftedsilkfibroinefficientremovalofdyesunderalkalineconditionsusingmagneticmembranetoachieveconductivity.NewJ.Chem.2020,44,7042−7050.chitosan-Fe(III)hydrogel.WaterRes.2011,45,5200−5210.(31)Wang,L.;Xu,B.;Nong,Y.;Wang,P.;Yu,Y.;Deng,C.;Yuan,J.;Wang,Q.Laccase-mediatedconstructionofflexibledouble-networkhydrogelsbasedonsilkfibroinandtyramine-modifiedhyaluronicacid.Int.J.Biol.Macromol.2020,160,795−805.(32)Raia,N.R.;Partlow,B.P.;McGill,M.;Kimmerling,E.P.;Ghezzi,C.E.;Kaplan,D.L.Enzymaticallycrosslinkedsilk-hyaluronicacidhydrogels.Biomaterials2017,131,58−67.(33)Nazarov,R.;Hyoung,J.J.;David,L.K.Porous3-Dscaffoldsfromregeneratedsilkfibroin.Biomacromolecules2004,5,718−726.(34)Zhang,Y.;Fan,Z.;Xu,C.;Fang,S.;Liu,X.;Li,X.Toughbiohydrogelswithinterpenetratingnetworkstructurebybienzymaticcrosslinkingapproach.Eur.Polym.J.2015,72,717−725.(35)Zhou,Q.;Yuan,J.;Wang,Y.;Wang,P.;Yuan,J.;Deng,C.;Wang,Q.BiomimeticmineralizationbehaviorofCOS-graftedsilkfibroinfollowinghexokinase-mediatedphosphorylation.Int.J.Biol.Macromol.2019,131,241−252.(36)Zhou,Q.;Cui,L.;Ren,L.;Wang,P.;Deng,C.;Wang,Q.;Fan,X.Preparationofamultifunctionalfibroin-basedbiomaterialvialaccase-assistedgraftingofchitooligosaccharide.Int.J.Biol.Macromol.2018,113,1062−1072.(37)Blundell,C.D.;Deangelis,P.L.;Almond,A.Hyaluronan:theabsenceofamide-carboxylatehydrogenbondsandthechainconformationinaqueoussolutionareincompatiblewithstablesecondaryandtertiarystructuremodels.Biochem.J.2006,396,487−498.(38)Guo,P.;Liang,J.;Li,Y.;Lu,X.;Fu,H.;Jing,H.;Guan,S.;Han,D.;Niu,L.High-strengthandpH-responsiveself-healingpolyvinylalcohol/poly6-acrylamidohexanoicacidhydrogelbasedondualphysicallycross-linkednetwork.ColloidsSurf.,A2019,571,64−71.(39)Nebhani,L.;Choudhary,V.;Adler,H.-J.;Kuckling,D.pH-andmetalion-sensitivehydrogelsbasedonN-[2-(dimethylaminoethyl)-acrylamide].Polymers2016,8,233.(40)Drnovsek,N.;Kocen,R.;Gantar,A.;Drobnic-Kosorok,M.;̌Leonardi,A.;Krizaj,I.;Recnik,A.;Novak,S.Sizeofsilkfibroinbeta-sheetdomainsaffectedbyCa2+.J.Mater.Chem.B2016,4,6597−6608.(41)Ruan,Q.-X.;Zhou,P.Sodiumioneffectonsilkfibroinconformationcharacterizedbysolid-stateNMRandgeneralized2DNMR−NMRcorrelation.J.Mol.Struct.2008,883−884,85−90.(42)Zhou,L.;Chen,X.;Shao,Z.;Huang,Y.;Knight,D.P.Effectofmetallicionsonsilkformationinthemulberrysilkworm,bombyxmori.J.Phys.Chem.B2005,109,16937.(43)Zhang,H.;Xia,H.;Zhao,Y.Poly(vinylalcohol)hydrogelcanautonomouslyself-heal.ACSMacroLett.2012,1,1233−1236.(44)Kaewpirom,S.;Boonsang,S.Influenceofalcoholtreatmentsonpropertiesofsilk-fibroin-basedfilmsforhighlyopticallytransparentcoatingapplications.RSCAdv.2020,10,15913−15923.(45)Bicudo,R.C.S.;Santana,M.H.A.Effectsoforganicsolventsonhyaluronicacidnanoparticlesobtainedbyprecipitationandchemicalcrosslinking.J.Nanosci.Nanotechnol.2012,12,2849−2857.(46)Yan,S.;Wang,Q.;Tariq,Z.;You,R.;Li,X.;Li,M.;Zhang,Q.Facilepreparationofbioactivesilkfibroin/hyaluronicacidhydrogels.Int.J.Biol.Macromol.2018,118,775−782.489https://dx.doi.org/10.1021/acs.langmuir.0c03136Langmuir2021,37,478−489

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭