《Construction of a Superhydrophobic Sodium Alginate Aerogel for E ffi cient Oil Absorption and Emulsion Separation - Yang et al. - 2021 -》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/LangmuirArticleConstructionofaSuperhydrophobicSodiumAlginateAerogelforEfficientOilAbsorptionandEmulsionSeparationYushuangYang,XiupingChen,YimingLi,*ZichaoYin,andMutaiBaoCiteThis:Langmuir2021,37,882−893ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Bio-basedaerogelsserveaspotentialmaterialsinseparationofoil/watermixtures.Nevertheless,thereremainsomekeychallenges,includingexpensive/toxicorganiccross-linkers,unpromisingreusability,andpoorperformanceinemulsionseparation.Hereby,anovel,robust,andsuperhydrophobicsodiumalginate/grapheneoxide/siliconoxideaerogel(SA/GO/SiO2-M)wasfabricatedbysimplecalciumioncross-linkingself-assembly,freeze-drying,andchemicalvapordepositionmethodsbasedontherenewableandabundantrawmaterials.Theas-preparedSA-basedaerogelpossesseshighabsorbencyforvarietiesoforganicsolventsandoils.Importantly,itshowshighefficiencyintheseparationofsurfactant-stabilizedwater-in-oilemulsions.SA/GO/SiO2-Maerogelsdisplayexcellentreusabilityinbothabsorptionandseparationbecauseoftheirgoodmechanicalpropertiesintheairandoilphase,andthemechanisminemulsionseparationisdiscussed.ThisstudyshowsthatSA/GO/SiO2-Maerogelsareapromisingmaterialintreatingoilcontaminantsfromdifferentfields.■INTRODUCTIONanimalresiduesareinexhaustible,renewable,andenvironment-12−14friendly.SeparatingoilfromwaterisofsignificanceinresolvingtheTheaerogelforoil/watermixtureseparationusuallyneedsaticklerofoilspill,industrialoilyeffluent,andotheroil1,2properthree-dimensional(3D)architecturesubstrateandapollutionfields.Variousoil/waterseparationtechniquesselectivewettabilitysurface.Thepreparationofanaerogelhavebeendevelopedinrecentyears.Intermsofthesolutionsubstratemainlyincludestwosteps,namely,sol−gelandtooilspill,physicalabsorptionandseparationmethodshavedrying.Physicalorchemicalcross-linkingisusuallyemployedattractedmuchattentionfromresearchersbecauseoftheir3−5topromotetheformationofa3Dnetworkstructureintheconvenienceandrecyclability.Industrialoilwastewaterestablishmentofasubstrate.Jiangetal.adoptedgelatinastheusuallyexistsintheformofstableemulsionswithmicrometer3Dscaffoldmaterialandthenbranchedpolyethylenimineontoparticlesize(d<20μm).Acommonmethodtoseparate15ittoobtainacompositeaerogel.Zhangetal.attachedemulsifiedoilfromwateristoutilizeseparationmaterialswith6−8cyanuricchlorideontonanocrystallinecelluloseandusedDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at11:54:07(UTC).aspecificwettabilityandasuitableporesize.Therefore,chloropropyltriethoxysilaneasacross-linkertoobtainaSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.materialsthatpossessthecapabilityofabsorptionand16cellulose-basedaerogel.Thehydrophobicmodificationofseparationaregreatlyexpectedinthefieldofoil/watermixturetheobtainedaerogelsubstratemainlyreferstopyrolysisortheseparation.useofhydrophobicmodificationreagents.ThepyrolysisofAerogels,especiallyfunctionaloneswithspecialwettabilityaerogelsrequiresanextremelyhightemperatureandaninertandinterconnectedporousstructures,havebeenconsideredas17environment,implyingthatthemanufacturingprocessneedsoneofthepromisingmaterialstodealwiththeproblemofoil/muchcostandenergy.Bycontrast,hydrophobicmodificationwatermixtureseparationinrecentyearsowingtotheirreagentsareeasytocontrol,andtherefore,theyarewidelyfollowingadvantages:(1)therichporestructureandlarge18employedbyresearchers.Consideringtheactualapplicationspecificsurfaceareaareconducivetotheabsorptionand9inthecomplicatedconditionsofoil/watermixtureseparation,storageofoil;(2)intermsofseparation,aerogelsprovidealongpathofemulsionpenetration,andtheirsurfacewithaspecialwettabilityenhancestheinterceptionandcoalescenceReceived:November9,2020ofwaterdroplets;10(3)aerogelspossessadvantagessuchasRevised:December22,2020lowdensity,recyclability,lesssecondarypollution,andsoon.11Published:January8,2021Amongvarioustypesofaerogels,bio-basedaerogelshavebeenrecognizedasoneofthemostcutting-edgecandidatesowningtothefactthatbio-basedmaterialsfromnaturalplantsand©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c03229882Langmuir2021,37,882−893
1Langmuirpubs.acs.org/LangmuirArticleFigure1.SchematicillustrationofthesynthesisoftheSA/GO/SiO2-Maerogel.researcherscontinuallystriveforthedevelopmentofsimpleselectivewettability,oilabsorption,andemulsionseparationmethodstoobtainaerogelmaterialswithmaximumpotentialcapability,havebeeninvestigatedindetail.Asexpected,theforoilabsorptionandseparation.SA/GO/SiO2-Maerogelshowsaproperporousstructure,lowSodiumalginate(SA),extractedfrombrownalgae,isoneofdensity,selectiveoilabsorptioncapacity,andhighefficiencyofthemostabundantnaturalpolysaccharideswiththeadvantagesemulsionseparationforvariousoils.TheadvantagesofthisSA-oflowcost,biocompatibility,nontoxicity,andconvenientionicbasedaerogelalsoincludegoodmechanicalproperties,agreen19cross-linking.Studiesonalginate-basedhydrogelsandpreparationenvironment,andamildmodificationmethod,aerogelshavebeenextensivelycarriedoutinvariousfieldswhichdemonstratesthatSA/GO/SiO2-Misanattractive202122suchasfoods,medicine,andchemicalengineering,etc.candidateforoil/waterseparation.Mostimportantly,theNevertheless,poormechanicalpropertiesandhighhydro-mechanisminseparatingemulsionsbyaerogelsisdiscussed,philicitygreatlylimittherecyclabilityandoilseparationwhichenrichesworksinemulsionseparationapplicationsbycapabilityofalginate-basedaerogels.Toovercomethisaerogels.drawback,addingreinforcingagentsisagoodchoice.Twokindsofalginate-basedaerogelsSA/MBAandSA/CMChavebeenpreparedandusedasoil-absorptivematerials.23AnSA/■EXPERIMENTALSECTIONMaterials.SAandmethyltrimethoxysilane(purityof>98%,TiO2aerogelwithagoodantifoulingpropertyshowedan24MTMS)werepurchasedfromSinopharmChemicalReagentCo.,excellentoil/waterseparationperformance.Inthisstudy,Ltd.(China).Graphite,D-gluconicacidδ-lactone(DGL),andn-grapheneoxide(GO),oneofthemostprevalentcarbontetradecane(purityof>98%)weresuppliedbyAladdinHoldingsmaterialsinrecentyears,isemployedasareinforcingagentGroup(China).KerosenewaspurchasedfromMacklin(China).baseduponitsexcellentfeatures.GOwithrichhydroxyl,Dieseloilwaspurchasedfromalocalgasstation.Crudeoilinthisepoxy,andcarboxylgroupscanassemblewithSAthroughexperimentwastakenfromtheHaierstationintheShengliOilfieldinhydrogenbonding,whichmightgreatlypromotetheformationChina.OtherreagentsusedinthisstudywereobtainedfromShanghaiofaninterconnectivestructure.25GOalsocouldenhancetheHushiLaboratoryEquipmentLimitedCompany(China).Thewatermechanicalpropertyofaerogelsbecauseofitsrigidtwo-usedwasdeionizedwaterinallexperiments.26PreparationofGOandSiO2.Grapheneoxide(GO)wasdimensionalsheet-likestructure.Additionally,thelarge33preparedbyemployingamodifiedHummers’methodasfollows.specificsurfaceareaofGOisexpectedtobefavorablefor27First,graphite(3.00g),H2SO4(0.36L),andH3PO4(0.09L)wereabsorption.Toachieveselectiveoilabsorption,demulsifica-mixed.Then,KMnO(18.00g)wasdividedinto6equalportionsand4tion,andevenemulsionseparation,theobtainedSAaerogelslowlyaddedintothemixture,producingaslightexothermicreactionsubstrateneedstobeendowedwithsuperhydrophobic/thatshouldnotexceed35−40°C.Afterthat,thereactionwasheatedsuperoleophilicitycharacteristics.Theprocessofconstructingto50°Candthenstirredfor12h.Next,thereactionmixturewasasuperhydrophobicsurfaceencompassestwoessentialparts:28cooledtoroomtemperature,andice(0.40L)and30%H2O2(3.00(1)increasingsurfaceroughnessand(2)reducingsurfacemL)weredroppedintotheabovesolution.Thesolidmaterialswereenergy.Basedonthis,SiOnanoparticlesareselectednotonlywashedbywater,HCl,andethanolsuccessivelyandseparatedby2centrifugation.Thecleansedimentwasfreeze-driedat−60°Cunderbecauseoftheirpropernanoscaleformbutalsobecauseofvacuumfor24h.Whenused,thedriedGOwasdispersedintoatheirlowcost,nontoxicity,easymodification,andmechanical29suspension.ThecrystalstructureofGOwasanalyzedbyX-raystrengthproperties.Methyltrimethoxysilane(MTMS),adiffraction(XRD,D2PHASER,Germany)inthe2θrangefrom5tocommonsilanecouplingagent,ischosenasamodified80°withascanningrateof5°/min,andthecorrespondingspectraarereagent,andthestrongvolatilityofMTMSisusedtoachieveshowninFigureS1.3034chemicalvapordeposition(CVD)duetothemildreactionSiO2particleswerepreparedbasedupontheStöbermethod.temperatures,low-costchemicals,andsimplereactiondevicesBriefly,4.50mLofammonia,89.50mLofethanol,and31.00mLofoftheCVDmethod.31,32waterweremixed,andthen,7.95mLoftetraethylorthosilicatewasBasedontheaboveideas,inthiswork,bydispersingSiOslowlyaddedintothemixture.After2hstirringatarotationrateof2nanoparticlesinthemixedliquidofSAandGO,a150rpm,SiO2particleswereprepared.Theseparticleswereseparatedbycentrifugation(8000rpm,10min)andwashedwithethanolfivesuperhydrophobicSA-basedaerogel(SA/GO/SiO2-M)willtimes.Thefinalprecipitatesweredriedundervacuumat60°C.Thebefabricatedviaasimplecombinationofself-assembly,ionicSEMimageofSiO2isshowninFigureS2.cross-linking,freeze-drying,andtheCVDmethod.AseriesofPreparationoftheSA-BasedAerogelandHydrophobiccharacterizationsandtests,includingtheaerogelstructure,Modification.TheprocedureforpreparingSA-basedcomposite883https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
2Langmuirpubs.acs.org/LangmuirArticleFigure2.SEMimagesof(a)SAaerogelandSA/GO/SiO2-MaerogelwhenthemassratioofGOandSAis(b)4:100,(c)8:100,and(d)10:100.(e,f)RoughsurfaceoftheSA/GO/SiO2-M(8:100)aerogelwithdifferentmagnifications.(g,h)SEM-EDSelementalmappingoftheSA/GO/SiO2-M(8:100)aerogelforC,O,Si,andCaelements.(i)PhotographoftheSA/GO/SiO2-Maerogel.aerogelsisshowninFigure1.First,0.20gofSiO2nanoparticlesandMicromeritics,USA).Theviscosityoftheoilphasewasmeasuredby0.15gofCaCO3powderwereultrasonic-dispersedintheas-preparedanHAAKEMARSIII(ThermoHaakeCo.,Ltd.,Germany)usingaparallelplate(P60TiL,0.4mmgapsetting)undera1000s−1shearSAsolution(30.00mL,0.75g)toobtainahomogeneoussuspension.Then,aGOsuspension(10.00mL)withdifferentmassfractionswasrateat25°C.addedintotheabovesolutionwhilestirring.ThemixturewasfurtherAbsorptionTest.TotesttheoilabsorptioncapabilityoftheSA/dispersedbyanultrasonicmethodfor20min.Finally,DGLsolutionGO/SiO2-Maerogel,thesamplewasimmersedinvariousorganic(10.00mL,0.30g)wasaddedunderstrongstirring.Thefinalmixturesolvents/oilsfor1mintoensureitssaturatedabsorption.Thesamplewasquicklypouredintoamoldandkeptstandingfor30mintoshapewasweighedupbeforeandafterabsorption.Theabsorptionability(gg−1)wascalculatedbythefollowingequationthegel.Afterthegelgotfrozenat−80°Candfreeze-driedat−60°Cundervacuumfor24h,theSA-basedaerogelwasobtained.ThissamplewaslabeledasSA/GO/SiO2.Inthiswork,theSA-based()mm−0Q=aerogelswithdifferentmassratiosofGOtoSA(4:100,6:100,8:100,m0(1)and10:100)wereprepared.Forcomparison,wealsopreparedtheSA/GOaerogelandthepureSAaerogelaccordingtothesamewherem0andmrepresentthemassofthesamplebeforeandaftermethod.saturatedabsorption,respectively.TheSA-basedaerogelwasplacedinabighermeticcontainer.TwoAlloilabsorptionexperimentswereconductedatroomtemper-smallopenvialsofwaterandMTMSwereaddedintothecontainer.ature,andeachtestwasaccomplishedthreetimesrepeatedlytoobtainThehermeticcontainerwasheatedinanovenat60°Cfor12htoanaveragevalue.Thesaturatedaerogelwasweighedquickly,withanachievethesalinizationreaction.SamplesmodifiedbyMTMSwereaimtoavoidtheevaporationoftheabsorbedoilororganicsolvent.labeledwithMtodistinguishunmodifiedsamples.Forexample,theTheabsorption-squeezeapproachandtheabsorption-evaporationSA/GO/SiO2-MaerogelimpliestheSA/GO/SiO2aerogelthathasapproachwereemployedtotestthereusabilityofaerogels,andbeenmodifiedbyMTMS.carbontetrachloridewasselectedasthemodeloil.BasedupontheCharacterizations.ThesurfacemorphologyoftheSA-basedabsorption-squeezeapproach,theabsorbedsolventwasremovedfromaerogelwassprayedwithaurumandobservedunderafieldemissiontheaerogelbyasimplemechanicalsqueeze.Thesqueezedaerogelwasscanningelectronmicroscope(SEM,S-4800,Hitachi,Japan).Theabletoabsorbthesolventagainwithoutanypost-treatment.Inthesurfaceelementsoftheoptimumsamplewereidentifiedbyafieldabsorption-evaporationapproach,theaerogelwasplacedinanovenatemissionscanningelectronmicroscope(SEM,QUANTAFEG250,60°Cfor3.0htoremovetheabsorbedsolvent,andthen,itcouldFEI,USA)equippedwithenergydispersiveX-rayspectroscopyworkagain.(EDS).FunctionalgroupsofsampleswereanalyzedbyanFTIRWater-in-OilEmulsionSeparation.Topreparethewater-in-oilspectrophotometer(ATR-FTIR,MAGNA-560,Nicolet,USA)intheemulsion(W/O),0.10gofspan-80wasfirstdissolvedinto99.00mLrangeof400−4000cm−1.Thesurfacechemicalpropertyoftheofoil,and1.00mLofwaterwasthenaddedintotheoilphase.samplewasidentifiedbyanX-rayphotoelectronspectrometer(XPS,Subsequently,themixturewasemulsifiedbyahigh-speedEscalab250Xi,ThermoFisherScientific,USA).Thethermalstabilityhomogenizer(16,800rpmfor5min,Ultra-TurraxT10,IKA,wasmeasuredonathermogravimetricanalyzerinstrumentGermany).Accordingtothetypesofoilsused(cyclohexane,carbon(TGA&DTG,SDTQ600,TAInstruments,USA)underanitrogentetrachloride,kerosene,anddieseloil),emulsionswerenamedasW-flow(100mLmin−1).Hydrophobicityoftheaerogelswasmeasuredin-H,W-in-C,W-in-K,andW-in-D,respectively.Thedropletsizesofbyacontactangle-measuringdevice(OCA20,DataPhysicsES,theemulsionswereobservedandmeasuredbyopticalmicroscopy.Germany)atroomtemperature.ThewatercontentoftheemulsionTotesttheseparationperformanceoftheaerogel,theemulsionsfiltrateswastestedbyaKarlFischermoisturemeter(C10S,werepouredontotheaerogel,whichwasfixedintoasyringe,andMETTLERTOLEDO,Switzerland).Theporediameterofthethen,theW/Oemulsionswereseparateddrivenbygravity.Theaerogelwasanalyzedbyamercuryporosimeter(AutoPoreIV9500,separationefficiency,S,wasdeterminedby884https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
3Langmuirpubs.acs.org/LangmuirArticleFigure3.(a)FTIRspectraoftheSA,SA/GO,SA/GO/SiO2,andSA/GO/SiO2-Maerogel.(b)XPSspectra,(c)high-resolutionC1sspectrum,and(d)high-resolutionSi2pspectrumoftheSA/GO/SiO2-Maerogel.(e)TGAweightlossandDTGcurvesoftheSA/GO/SiO2-Maerogel.()CC0−structurewithinterconnectiveporesinsideandoutside,S=C0(2)indicatingthatGOissuccessfullyintroducedtoparticipateintheformationofporesandnetworkstructures.ThewhereC0andCrepresentthewatercontentinemulsionsbeforeandintroductionofSiO2andMTMSexertsnoobviousimpactafterseparation,respectively.ontheformationofporestructuresandporesizecomparedwithSA/GOaerogelsasshowninFigureS3.Thisfurther■RESULTSANDDISCUSSIONillustratesthattheself-assemblybetweenGOandSAplaysaCharacterizationoftheSA/GO/SiO2-MAerogel.Asleadingroleintheformationofporousstructure.Withtheobservedfromlower-magnificationSEMimagesshowninincreaseintheGOamount,thenumberofpolygonalholesFigure2a−d,aerogelswithdifferentmassratiosofGOandSAincreasessignificantly,andtheholesbecomeevensmaller.showdifferentstructures,demonstratingthatGOhasbeenSpecifically,whenthemassratiois4:100(Figure2b),a3DembeddedintheSAmatrixandisabletocontrolthestructureporousnetworkstructurebeginstoformintheaerogel.Whenasexpected.AsillustratedinFigure2a,thepureSAaerogelthemassratioincreasesto8:100(Figure2c),theaerogelprimarilyshowsanirregularlamellarstructurewith30−70μmexhibitsaperfectcellularporousstructurewithporesofinterlamellarspacing,andtherearefewlargeporestructures,connectedtoeachother.Theporeswithanaveragesizeof1,4,12,14whichmainlyresultfromthelinkedSAchainsasawhole50−100μmaresuitableforthestorageofliquids.duringthefreezingprocess.WhenGOnanosheetsarepresent,However,whenthemassratiorisesto10:100(Figure2d),theSA/GO/SiO2-Maerogelsshoweda3Dporousnetworkporestructurecollapsesandbreaksupslightly.FigureS4885https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
4Langmuirpubs.acs.org/LangmuirArticleshowstheporesizedistributionoftheSA/GO/SiO2-MFurthermore,weobservedtheintensifiedpeaksat880,1250,(8:100)aerogel.Theresultsshowthattheporediameterand1000−1130cm−1afterMTMSmodification,andthepeaksrangesfrom10to100μmandisconcentratedat60μm,theareconcernedwithSi−C,Si−O,C−H,andSi−O−Si,averageporediameteris45.7μm,andtheporosityis97%,resultingfromthecharacteristicvibrationsofpolysiloxane38whichindicatethattheSA/GO/SiO2-M(8,100)aerogelhasaafterMTMShydrolysis.TheseFTIRspectralresultsrevealhierarchicalporousstructureandhaspotentialfortheoilthesuccessfulconstructionoftheSA/GO/SiO2-Maerogel.absorptionandemulsionseparation.ThesurveyspectraofXPSwereusedtodeterminetheThesurfaceoftheSA/GOaerogelissmooth,andthereissurfacechemicalbondingstateofO,C,andSielementsinthesomeslightcorrugation,whichisdisadvantageoustosuper-SA/GO/SiO2-Maerogel(Figure3b−d).TheC1speakhydrophobicitymodification(FigureS3a).However,theelectronspectralfittingwasfractionatedasshowninFigure3c.surfaceofSA/GO/SiO2-MaerogelsbecomesroughnoticeablyThreepeaksat284.9eV(C−CandCH3bonds),286.4eVbecauseoftheadditionofSiO2nanoparticles(FigureS3band(C−Sibonds),and287.9eV(C−Obonds)were31,35Figure2e,f).Itcouldbeclearlyobservedthatmicro-nanoobserved.Alltheseresultsconfirmthesuccessful39bulgesareevenlydistributedonthesurfaceoftheaerogel,andintroductionofsilanechains.theyconstitutedthestructuralfoundationofsuperhydropho-ThethermalstabilityoftheSA/GO/SiO2-MaerogelwasbicityduetotheSiO2nanoparticles.ThechemicalinvestigatedthroughTGAandDTGanalysisasshownincompositionofSA/GO/SiO2-MaerogelsonthesurfaceandFigure3e.Thecurvesdemonstrateathree-stageprocess:fromthedistributionofpaintcoatwereidentifiedwiththehelpof30to150°C,18.4%oftheoriginalweightislost,whichwas35EDSspectroscopy(Figure2g,h).ThepeaksofC,O,Si,andCacausedbythelossofadsorbed/hydratedwater;from200toelementswereobservedfromthecorrespondingSEM-EDS300°C,thereappearsa23.8%lossoftheoriginalweight,mappingimages.TheelementsCandOweremainlyfromthewhichwasattributedtothehydrogenbondfractureaswellasSA-basedaerogelsubstrate.TheelementSiwasobtainedfromthedehydroxylationandthepreliminarydecompositionof40SiO2nanoparticlesandMTMScoating.Also,thehomoge-SA;thelossofweightdeclinesslowlybetween350and550neousdistributionoftheCaelementsuggeststhattheaerogel°C,anda15.8%lossoftheoriginalweightwasattributedto35iscross-linkeduniformly,whichisimportantforthethefurtherdegradationofSAandthecarbonationofGO.mechanicalstrengthofthepreparedaerogel.OilAbsorptionCapability.ThespecialwettabilityofWiththeincreaseintheGOamount,thedensityofthematerialsisessentialforselectiveseparationofoil/wateraerogelgrowsgraduallyduetotheincreaseinrawmaterialsmixtures.Figure4a,bshowsthespecialwettabilityoftheSA/(FigureS5a),whiletheaerogelwiththegreatestGOmasscanstandonthetopofadandelion(Figure2i).ThoughtheadditionofGOenlargesthespecificsurfacearea,theoilabsorptioncapacitiesofSA/GO/SiO2-Maerogelsforcyclo-hexaneandcarbontetrachlorideareweaklyinfluencedbytheGOamount(FigureS5b)becausetheoilabsorptionisacomprehensiveresultofmanyfactorsincludingspecificsurfacearea,oilstoragespace,andaerogels’mass.WhenthemassratioofGOtoSAremains8:100,aerogelsdisplaythemostexcellentabsorptioncapacity,whichisconsistentwiththeresultofSEM.Consideringthesuitableporestructureandabsorptioncapacity,themassratioof8:100isconsideredasthebestratioofGOtoSA,andtheSA/GO/SiO2-Maerogelwiththisratioischosenasthebestsampleforsubsequentcharacter-izationandperformancetests.Figure3ashowstheFTIRspectraofSA(a1),SA/GO(a2),SA/GO/SiO2(a3),andSA/GO/SiO2-M(a4)aerogels.FortheFigure4.(a)AmphiphiliccharacteristicsoftheSA/GO/SiO2aerogel.SAspectrum(a),thepeakat3650cm−1isduetothe(b)SuperoleophilicityoftheSA/GO/SiO-Maerogel.(c)Water12stretchingvibrationofO−H.Thepeaksat1600and1420contactangleoftheSA/GO/SiO2-Maerogel.(d)Photographsofthecm−1areassociatedwiththeasymmetricandsymmetricSA/GO/SiO2aerogelandtheSA/GO/SiO2-Maerogelinwater.Photographsshowing(e)removalofcyclohexanefromthewaterstretchingvibrationof−COOHgroups,respectively.Thepeak−1surfaceand(f)carbontetrachlorideabsorptionunderwaterbythenear1050cmiscausedbyC−Obending.Thepeakat820−135SA/GO/SiO2-Maerogel.cmisattributedtotheCa−alginatelinkage.AftertheadditionofGO(a),thepeakaround3650cm−1weakens2becauseofthehydrogenbondinteractionsbetweenGOandGO/SiO2aerogelandtheSA/GO/SiO2-Maerogel,respec-SA.Simultaneously,thepeaksat1600,1420,and1050cm−1tively.Bothwaterandoilturnouttobecompletelywettedandbecomestrongerobviously,whichmightbecausedbytheC−permeateintotheSA/GO/SiO2aerogel,onlyleavingablueCstretchingmodeofthesp2network,theC−O−Cstretchingwatermarkandaredoilmark(Figure4a).Thisrevealsthat35,36mode,andtheC−Obendingmode.FortheSA/GO/SiO2theSA/GO/SiO2aerogelpossesseshydrophilicityandlip-spectrum(a),thenewpeakat461cm−1isattributedtoSi−3ophilicity.Nevertheless,fortheSA/GO/SiO2-Maerogel,itO−Si,indicatingthatSiO2issuccessfullyloadedintheshowssuperhydrophobicityandsuperoleophilicitythatmight37aerogels.ThemaindifferenceinFTIRspectrabetweenthebeattributedtothehighsurfaceroughnessandlowsurfaceSA/GO/SiO2andSA/GO/SiO2-Maerogelisat400−1600energy;thus,itcanonlybethoroughlywettedandpermeatedcm−1.Anewpeakat780cm−1causedbytheSi−CHbondisbyoil(Figure4b).OnthesurfaceoftheSA/GO/SiO-M32observedintheFTIRspectraoftheMTMS-modifiedaerogel.aerogel,thewatercontactangleis154°(Figure4c),886https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
5Langmuirpubs.acs.org/LangmuirArticleFigure5.(a)AbsorptioncapacityoftheSA/GO/SiO2-Maerogelforvariousoilsororganicsolventsand(b)absorptioncapacitiesmarkedwithdensityofsolvents.manifestingprominentwaterrepellency.WhentheSA/GO/theorganicsolvents/oilscorrespondingtotheminimum27,44SiO2aerogelandtheSA/GO/SiO2-Maerogelwereplacedinabsorptioncapacityareoflowerdensity,suchashexane45,46watersimultaneously(Figure4d),theSA/GO/SiO2aerogelandgasoline.Onthecontrary,theorganicsolvents/oilsabsorbswaterandthenbeginstosink,whiletheSA/GO/SiO2-correspondingtothemaximumoneareofhigherdensity,4746Maerogelcontinuestofloatbecauseofitshydrophobicityincludingdichloromethaneandcarbontetrachloride.So,evenonehourlater.TheseresultsindicatethatMTMSboththedensityoforganicsolvents/oilsandthequalityofthemodificationmakestheSA-basedaerogelshowexcellentaerogelitselfgreatlyinfluencethevaluesoftheabsorptionselectivewettability,whichisofgreatimportanceforoil/capacity.AsshowninTable1,theabsorptioncapacityofthewaterseparation.SA/GO/SiO2-MaerogeliscomparabletoorweakerthanthatCyclohexaneandcarbontetrachloridewereselectedasofsomenon-SAbio-basedaerogelsandcarbonaerogels.representativesoffloatingoilandsinkingoil,respectively,forHowever,comparedwithSA-basedaerogels,SA/GO/SiO2-MthepurposeofevaluatingthepotentialoftheSA/GO/SiO2-Mshowsaremarkablyhigherabsorptioncapacity.Importantly,aerogelasanoilabsorbent.AsshowninFigure4eandVideobesidesthehighlyefficientoilabsorptionability,theSA/GO/S1,whentheSA/GO/SiO2-MaerogelwasplacedintotheSiO2-Maerogelsimultaneouslypossessesanexcellentemulsionmixtureofcyclohexaneandwater,cyclohexanefloatingontheseparationabilitythatwewilldiscusslater.Nevertheless,thesurfaceofwaterwascompletelyandquicklyabsorbedwithinSA-basedaerogelsreportedintheliteratureseemtohaveonlynomorethan10s.Moreover,asshowninFigure4fandVideoasinglecompetency.Whatismore,thosereportedSA-basedS1,theSA/GO/SiO2-Mcanselectivelyabsorbcarbonaerogelscouldnotseparatestableoil−wateremulsionswithtetrachlorideratherthanwaterwithinlessthan10s.Itissmallerdropletsize.Somecarbonaerogelsshowexcellentnoteworthythatwhentheaerogelwasimmersedintowater,performanceonbothoilabsorptionandemulsionseparation,themirror-likeonthesurfacedirectlyreflectsthehydro-asindicatedinthetable.TheabsorptioncapacityoftheSA/41phobicity,andthebubblesformedintheabsorptionprocessGO/SiO2-Maerogelseemsweakerthanthatofthecarbondirectlydisplaythegreatoilstoragespaceinsidetheaerogel.aerogelpreparedfromwastepaper/bananapeel(35−115gTherefore,theSA/GO/SiOaerogelisconsideredasanidealg−1,aerogeldensityof15mgcm−3)48orPlatanusorientalis2absorbentforoilspilltreatmentandoilywastewaterfibers(30−150gg−1,aerogeldensityof8.3mgcm−3).49remediation.Specifically,thedensityoftheSA/GO/SiO2-Maerogel(36.6Inthisexperiment,elevenkindsoforganicsolventsoroilsmgcm−3)is2−4timeshigherthanthatofthecarbonaerogel,includingcrudeoilwereusedtoevaluatetheabsorptionwhilethemassabsorptioncapacityofthecarbonaerogelis2−capacityoftheSA/GO/SiO2-Maerogel.Figure5ashowsthe3timeshigherthanthatoftheSA/GO/SiO2-Maerogel.ItcanabsorbencyoftheSA/GO/SiO2-MaerogelforvariousoilsbeestimatedthatthelowerabsorptioncapacityvalueofSA/rangingfrom17.92to43.92gg−1.WiththeincreaseintheoilGO/SiO2-Maerogelsismainlyattributedtothehigherdensitydensity,theabsorptioncapacitypresentsarelativelygooditself.linearrelationship(Figure5b).TheabsorptioncapacityisevenOilDesorptionCapacityandRecyclability.TheSA/asstrongassomesponges,likeasuperhydrophobicattapulgite-GO/SiO2-Maerogelshowsexcellentcompressibility,whichiscoatedPUspongefabricatedbyLietal.(17−45gg−1for7essentialfortherecoveryofabsorbedoilandreusabilityof42kindsofoils)andaseriesofsilane-functionalizedpolyvinylmaterials.AsshowninFigure6a,bandVideosS2andS3,thealcoholformaldehydespongessynthesizedbyWangetal.(4−SA/GO/SiO2-Maerogelexhibitsexcellentrecoverability.Ina14gg−1for7kindsofoils).43Table1comparestheabsorptiondrycondition,therecoveryoftheaerogel’sshapeiseasyandcapacitiesoftheSA/GO/SiO2-Maerogelwithothertypesofrapidafterbeingcompressedbyaweightof100g.FigureS6abio-basedaerogelmaterialsreportedrecently.Becauseawidershowsthatthevolumechangeunder100gweightvarietyoforganicsolvents/oilswerecoveredintheseliteraturecompressionisabout65%.FigureS6bshowsthestress−strainstudies,inTable1,weonlylisttheorganicsolvents/oils,forcurveundera70%volume.Theaerogelpresentedabout26whichtheabsorbentshowstheminimumandmaximumkPaofcompressivestressata70%strain,andthisvaluewasabsorptioncapacity.Therangebetweenthesetwovaluesishigherthanthatofgreenaerogelsinpreviousliterature53,54usedtoevaluatetheremovalcapacitiesofvariousreportedstudies.ThehighcompressivestresswouldbebeneficialaerogelmaterialsandSA/GO/SiO2-M.Itcanbefoundthatfortheintegritymaintenanceinpracticalapplications.Inthe887https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
6Langmuirpubs.acs.org/LangmuirArticlework47274446393845484923235051245299.53this99.799.65−−−ciency(%)ref.separationffie=1:1)=1:1)98.798.6=1:99)=1:20)99.699.99oiloil=1:99)98.99oiloiln02/10/40andfi:V:Voil:V:V:VwaterwaterVVwaterwaterwaterVVVchloroformkeroseneoilsoybeanoil,andbenzeneandkeroseneoil(4):toluene,hexadecane,diesel,andsurfactant:Tween80(1mg/mL)oil(4):PolyAlphaOlesurfactant:noneoil/watermixture(oil(4):hexane,soybeanoil,kerosene,andpumpoil/watermixture(oil(5):gasoline,petroleumether,hexane,oil(4):hexane,dieseloil,carbontetrachloride,surfactant:Tween80(1mg/mL))mixture1−486863124234−−197−−−115W/Oemulsion(150W/Oemulsion(−25.9939−28.20−20−−13.25−13.98−−43.92−W/Oemulsion(803011.2absorption13.7710.2010.9817.92capacity(ggThecarbonaerogelsherearenotonlypyrolyzedintheprocessofproductionbutalsomadebn40,fiabsorptionseparationadichloromethane,etc.(10)etc.(11)etc.(11)tetrachloride,etc.(10)(10)etc.(6)oil,etc.(4)oil,etc.(4)etc.(10)etc.(11)hexane,tetrachloromethane,)oil3−57methylsiliconeoil,peanut86methylsiliconeoil,peanut−−density72.810cyclohexane,5.9hexane,dichloromethane,55hexane,dichloromethane,27.1112gasoline,carbon16.2hexane,chloroform,etc.(9)hexane,phenoxin,etc.(15)15gasoline,chloroform,etc.DMF,pumpoil,etc.(11)318.35diesel,PolyAlphaOle35354136.6hexane,carbontetrachloride,(mgcm°erentAbsorbentMaterialsff°°°°°°°°°°°°°°superoleophobicity,<145.7superoleophobicity,>155157150.3149.3151underwaterunderwaterber<125fi-M15422berscellulose/silicagraphenebananapeelfichitosanESO/cellulosegraphene/132.6cellulose/chitosan/cellulose152.8chitosancellulosenanobamboofungus152.3wastepaper/154.2PlatanusorientalisSA/CMCSA/celluloseSA-Ca-Zr120148.7SA/TiO140.5SA/N-succinylSA/GO/SiOhexane,chloroform,etc.(7)17bspeciesmaterialswettabilityaerogelTable1.ComparisonofthePropertiesofDinon-SAbio-basedcarbonaerogelSA-basedaerogelSA/MBA129aIntheoilcolumnoftheform,thenumbersinparenthesesrepresentthenumberoftypesofoilsabsorbed.bybiomassmaterials.888https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
7Langmuirpubs.acs.org/LangmuirArticleFigure6.(a)ShaperecoveryoftheSA/GO/SiO2-Maerogelafterbeingcompressedbyaweightof100g.(b)Photographsshowingtheprocessofrecyclingtheaerogelbysqueezingincarbontetrachloride.OilrecoveryabilityofSA/GO/SiO2-Mover10cyclesofabsorptionanddesorptionby(c)evaporationand(d)mechanicalsqueezing.oilphase,thecompressedaerogelcouldabsorboilandrecoverseriesofwater-in-oilemulsionsstabilizedbysurfactants,suchitssaturationstate.ToinvestigatethereusabilityoftheSA/aswater-in-cyclohexane(W-in-H),water-in-carbontetrachlor-GO/SiO2-Maerogel,twocommonmethods,namely,evapo-ide(W-in-C),water-in-kerosene(W-in-K),andwater-in-dieselrationandmechanicalsqueezing,wereemployedtoremoveoil(W-in-D).Fromtheopticalmicroscopicimagesoftheabsorbedoil.Carbontetrachloridewasselectedasamodelemulsions,theaveragediametersofwaterdropletsforW-in-oilphase.SampleswereweighedupbeforeandafterH,W-in-C,W-in-K,andW-in-Demulsionswere4.36,2.01,evaporationormechanicalsqueezingtocalculatetheamount3.87,and3.42μm,respectively(FigureS8).Afterfiltrationbyofoilabsorbedbytheaerogelintherecyclabilityexperiments.theaerogel,themilkywater-in-oilemulsionsbecametrans-AsshowninFigure6c,theabsorbedoilisthoroughlyremovedparent,andwaterdropletswerenotobservedintheopticalaftereachevaporationat60°Cfor3h.About89.8%ofitsimagesasshowninFigure7a−d.Theemulsionseparationinitialabsorbencyremainsafter10cycles.ThismethodcanbeprocessisshowninVideoS4.ThedifferenceinseparationappliedtodesorboilthathasalowboilingpointandisratesisexplainedbrieflyinTableS1intheSupportingevaporable.Figure6dshowsthataround24%oftheoilhasInformation.Figure7e,fdemonstratestheseparationefficiencybeenleftintheaerogelaftereachmechanicalsqueezingcycle.oftheSA/GO/SiO2-Maerogelforfourtypesofoil-in-waterEighty-ninepercentoftheoriginalabsorptioncapabilityemulsionsandtheircorrespondingwatercontentsintheremainsafter10cycles.Thedeclinedabsorptioncapacityfiltrates.TheseparationefficiencyiscomparablewiththemayresultfromtheslightcollapseofthestructureinthereportedcarbonaerogelsshowninTable1,butthepreparationrecoveryprocess,whichishardlyavoidable.FigureS7showsconditionsofSA/GO/SiO2-MaerogelsaremilderandthetheSEMimageoftheaerogelafter10cyclesofmechanicalcross-linkingmodeismuchgreenerthanthatusedinpreparing48squeezingandabsorption.Itcanbeseenthatthestructurehascarbonaerogels.Althoughanunderwatersuperoleophobicnoobviouschange,whichshowsthegoodmechanicalstrengthSA/TiO2aerogelandSA/N-succinylchitosanaerogelwereoftheaerogel.Althoughthemechanicalsqueezingmethodfailsusedtoseparatesimpleoil/watermixturesasTable1shows,ittoremoveabsorbedoilcompletely,itcanrecycleoilrapidlyisworthmentioningthatSA-basedaerogelsarerarelyinvolvedwithlowercostandissuitablefornearlyalltypesofoils.So,inemulsionseparation.WealsomadeasimplecomparisontheexcellentperformanceoftheSA/GO/SiO2-Maerogelinwithothermaterialsontheemulsionseparationefficiency,andmechanicalsqueezingdemonstratesthattheaerogelpossessestheseparationefficiencyoftheSA/GO/SiO2-Maerogelgreatpotentialforthepracticalapplicationtotheseparation(Voil:Vwater=99:1,98.99−99.53%)isnolessthanthatofandrecoveryofoilsandorganicsolventsfromwater.othermaterials,suchasasuperhydrophobicSiO2/poly-EmulsionSeparationPerformance.Inadditiontothe(vinylidenefluoride)compositemembrane(Voil:Vwater=55goodabsorptioncapacityandexcellentcompressibility,99:1,98.7−99.78%),ametalmeshcoatedbycopper56anotheradvantageoftheSA/GO/SiO2-Maerogelisitsgreathydroxide(Voil:Vwater=50:1,>99.0%),andawoodslice57potentialinemulsionseparation.Efficientemulsionseparationcoveredbycopperhydroxide(Voil:Vwater=50:1,>98%).inaneco-friendly,efficient,andlow-costmannerisstillagreatConsideringtheadditionaladvantagesoftheaerogel,likeitschallenge,especiallyinthepresenceofsurfactants.TotestthesimplerpreparationmethodanditcanbecustomizedintheseparationperformanceoftheSA/GO/SiO2-Maerogelforformofinjectionmolding,theSA/GO/SiO2-Maerogelshowsemulsion,itwasfixedintoasyringeandthenusedtoseparateagreatpotentialinpracticalapplication.889https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
8Langmuirpubs.acs.org/LangmuirArticleFigure7.Digitalimageandopticalimageofthesurfactantstabilityemulsionseparationperformance:(a)water-in-cyclohexane,(b)water-in-carbontetrachloride,(c)water-in-kerosene,and(d)water-in-dieseloil.(e)Separationefficiencyand(f)watercontentinfiltratesofvarioussurfactant-stabilizedW/Oemulsions.Inordertofurtherinvestigatetheseparationabilityoftheaerogelforemulsions,0.1goftheSA/GO/SiO2-Maerogelwasutilizedforacontinuousseparationofthewater-in-carbontetrachlorideemulsion.Duringtheseparation,every10mLofthefiltratewascollectedandputinavialmarkedwithaserialnumber.AsFigureS9reveals,thefirst40mLofthefiltrateinbottles1,2,3,and4istransparent,indicatinganapproximate400mLemulsionseparationabilitypergramoftheaerogel.Thefiltratesinbottles5,6,and7becometurbidgradually,butthediameterofwaterdropletsinbottle6or7ishigherthanthatbeforefiltration(FigureS9b−e).ItisworthytonotethatFigure8.Water-in-oilemulsionseparationmechanismthroughtheSA/GO/SiO2-Maerogel.aftertheaerogelwascleanedwithdichloromethane,itstillshowedefficientseparationforemulsionsasshowninFigureS10,whichdemonstratesthegoodcyclestabilityoftheSA/theaerogelisajaggedporousstructure,sosmallwaterdropletsGO/SiO2-Maerogel.Also,thewatercontentresultafterfivecouldbeadheredtootherdropletsinthelongandcyclesshowsthattheaerogelcanretain98.3%separationinterconnectedmicrochannelsofaerogels,thusforminglargerefficiency.onestoachievedemulsificationandseparation.TheprocessTogainamorecomprehensiveunderstandingonthecanexplainwhytheSA/GO/SiO2-Maerogelcanalsoseparationmechanismofwater-in-oilemulsionsbytheSA/effectivelyseparatevarioussurfactant-stabilizedwater-in-oilGO/SiO2-Maerogel,anillustrationoftheseparationprocessisemulsionsdrivenbygravitywhenthesizesofemulsifiedindicatedinFigure8.WhentheW/Oemulsionsarepoureddroplets(2−5μm)arefarsmallerthantheporesizeoftheontotheaerogel,thecoalescenceofemulsifiedwaterdropletsaerogel(60μm).Astheamountoftheemulsionincreases,theandthesize-sievingfiltrationintheaerogeloccur.Specifically,surfaceoftheaerogelcouldbepollutedbysurfactants,thusthemicrowaterdropletsarerepelled,buttheoilphaseleadingtoadecreasedseparationability.Aftertheaerogeliscontinuouslypassesthroughtheaerogelbecauseofthecleaned,theaerogelregainsitsexcellentabilitytoseparatesuperhydrophobic/superoleophilicproperties.Theinteriorofemulsions.890https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
9Langmuirpubs.acs.org/LangmuirArticle■CONCLUSIONSChina,Qingdao266100,P.R.China;orcid.org/0000-0002-1595-4769Insummary,thisstudydemonstratesafacilemethodtoprepareasuperhydrophobicSA-basedaerogelviaacombina-Completecontactinformationisavailableat:tionofcalciumioncross-linkingself-assembly,freeze-drying,https://pubs.acs.org/10.1021/acs.langmuir.0c03229andCVDhydrophobicmodification.TheobtainedSA/GO/SiO2-MaerogelshowsaporousandsuperhydrophobicNotesstructureasexpected,whichendowstheaerogelwithanTheauthorsdeclarenocompetingfinancialinterest.excellentoilabsorptioncapacity.Theaerogelcanseparatevarioussurfactant-stabilizedwater-in-oilemulsionswithhigh■efficiency(98.99−99.53%)undertheactionofgravity.TheACKNOWLEDGMENTSSA/GO/SiO2-MaerogelexhibitsexcellentcompressibilityandThisresearchissupportedbytheNationalNaturalSciencegoodrecyclability,whichmatchperfectlywiththerequire-FoundationofChina(21773219),theQingdaoNationalmentsfortherecycleofoilpollutants.Moreover,theSA-basedLaboratoryforMarineScienceandTechnologyaerogelisenvironmentallyfriendlyandlow-cost,andthe(QNLM2016ORP0308),andtheShandongKeyLaboratorypreparationprocessismildandsimple,thusgreatlyloweringofWaterPollutionControlandResourceReuse(2019KF03).thepotentialpollutionriskandapplicationcost.Therefore,theThisisMCTLcontributionno.240.SA/GO/SiO2-Maerogelobtainedinthisworkshowsgreatprospectsinpracticaloilpollutiontreatments,includingoil■REFERENCESspillcleanup,fuelpurification,andemulsionseparation.(1)Ge,J.;Zhao,H.-Y.;Zhu,H.-W.;Huang,J.;Shi,L.-A.;Yu,S.-H.AdvancedSorbentsforOil-SpillCleanup:RecentAdvancesand■ASSOCIATEDCONTENTFuturePerspectives.Adv.Mater.2016,28,10459−10490.*sıSupportingInformation(2)Chen,C.;Weng,D.;Mahmood,A.;Chen,S.;Wang,J.TheSupportingInformationisavailablefreeofchargeatSeparationMechanismandConstructionofSurfaceswithSpecialhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c03229.WettabilityforOil/WaterSeparation.ACSAppl.Mater.Interfaces2019,11,11006−11027.PhotographofaGOsuspensionandanXRDpatternof(3)Wang,Y.;Yang,H.;Chen,Z.;Chen,N.;Pang,X.;Zhang,L.;GO;SEMimageofSiO2nanoparticles;SEMimagesofMinari,T.;Liu,X.;Liu,H.;Chen,J.RecyclableOil-AbsorptionFoamstheSA/GOaerogelandtheSA/GO/SiO2-MaerogelviaSecondaryPhaseSeparation.ACSSustainableChem.Eng.2018,6,withdifferentmagnifications;porediameterfortheSA/13834−13843.GO/SiO2-MaerogelwhenthemassratioofGOandSA(4)Li,Z.;Zhong,L.;Zhang,T.;Qiu,F.;Yue,X.;Yang,D.is8:100;density,contactangle,andabsorptioncapacitySustainable,Flexible,andSuperhydrophobicFunctionalizedCellulosedata;volumechangesandthestress−straincurvedata;AerogelforSelectiveandVersatileOil/WaterSeparation.ACSSustainableChem.Eng.2019,7,9984−9994.SEMimageoftheSA/GO/SiO2-Maerogelafter10(5)Qiu,S.;Li,Y.;Li,G.;Zhang,Z.;Li,Y.;Wu,T.Robustcyclesofmechanicalsqueezingandabsorption;diameterSuperhydrophobicSepiolite-CoatedPolyurethaneSpongeforHighlydistributionofwaterdropletsintheemulsions;filtratesEfficientandRecyclableOilAbsorption.ACSSustainableChem.Eng.afteracontinuousseparationdata;reusabilityofthe2019,7,5560−5567.aerogelforemulsionseparation;densityandviscosityof(6)Zhan,H.;Zuo,T.;Tao,R.;Chang,C.RobustTunicateCellulosetheoilphase;references(PDF)Nanocrystal/PalygorskiteNanorodMembranesforMultifunctionalFloatingoilandsinkingoilabsorption(MP4)Oil/WaterEmulsionSeparation.ACSSustainableChem.Eng.2018,6,Shaperecoveryoftheaerogelafterbeingcompressedby10833−10840.(7)Ye,H.;Chen,D.;Li,N.;Xu,Q.;Li,H.;He,J.;Lu,J.Durableaweightof100g(MP4)andRobustSelf-HealingSuperhydrophobicCo-PDMS@ZIF-8-Processofrecyclingtheaerogelbysqueezing(MP4)CoatedMWCNTFilmsforExtremelyEfficientEmulsionSeparation.Emulsionseparationprocess(MP4)ACSAppl.Mater.Interfaces2019,11,38313−38320.(8)Guan,Y.;Cheng,F.;Pan,Z.SuperwettingPolymericThree■Dimensional(3D)PorousMaterialsforOil/WaterSeparation:AAUTHORINFORMATIONReview.Polymer2019,11,806.CorrespondingAuthor(9)Ieamviteevanich,P.;Palaporn,D.;Chanlek,N.;Poo-arporn,Y.;YimingLi−KeyLaboratoryofMarineChemistryTheoryandMongkolthanaruk,W.;Eichhorn,S.J.;Pinitsoontorn,S.CarbonTechnology,MinistryofEducation,OceanUniversityofNanofiberAerogel/MagneticCore−ShellNanoparticleCompositesasChina,Qingdao266100,P.R.China;orcid.org/0000-RecyclableOilSorbents.ACSAppl.NanoMater.2020,3,3939−3950.0003-0437-1661;Email:liym@ouc.edu.cn(10)Si,Y.;Fu,Q.;Wang,X.;Zhu,J.;Yu,J.;Sun,G.;Ding,B.SuperelasticandSuperhydrophobicNanofiber-AssembledCellularAuthorsAerogelsforEffectiveSeparationofOil/WaterEmulsions.ACSNanoYushuangYang−KeyLaboratoryofMarineChemistry2015,9,3791−3799.TheoryandTechnology,MinistryofEducation,Ocean(11)Yang,W.;Wang,N.-N.;Ping,P.;Yuen,A.C.-Y.;Li,A.;Zhu,S.-UniversityofChina,Qingdao266100,P.R.ChinaE.;Wang,L.-L.;Wu,J.;Chen,T.B.-Y.;Si,J.-Y.;Rao,B.-D.;Lu,H.-D.;XiupingChen−KeyLaboratoryofMarineChemistryTheoryChan,Q.N.;Yeoh,G.-H.Novel3DNetworkArchitecturedHybridandTechnology,MinistryofEducation,OceanUniversityofAerogelComprisingEpoxy,Graphene,andHydroxylatedBoronNitrideNanosheets.ACSAppl.Mater.Interfaces2018,10,40032−China,Qingdao266100,P.R.China40043.ZichaoYin−KeyLaboratoryofMarineChemistryTheory(12)Liu,H.;Geng,B.;Chen,Y.;Wang,H.ReviewontheAerogel-andTechnology,MinistryofEducation,OceanUniversityofTypeOilSorbentsDerivedfromNanocellulose.ACSSustainableChina,Qingdao266100,P.R.ChinaChem.Eng.2016,5,49−66.MutaiBao−KeyLaboratoryofMarineChemistryTheoryand(13)Doshi,B.;Sillanpaä,M.;Kalliola,S.Areviewofbio-based̈Technology,MinistryofEducation,OceanUniversityofmaterialsforoilspilltreatment.WaterRes.2018,135,262−277.891https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
10Langmuirpubs.acs.org/LangmuirArticle(14)Yang,W.-J.;Yuen,A.C.Y.;Li,A.;Lin,B.;Chen,T.B.Y.;Yang,(32)Zhu,Z.;Fu,S.;Lucia,L.A.AFiber-AlignedThermal-ManagedW.;Lu,H.-D.;Yeoh,G.H.Recentprogressinbio-basedaerogelWood-BasedSuperhydrophobicAerogelforEfficientOilRecovery.absorbentsforoil/waterseparation.Cellulose2019,26,6449−6476.ACSSustainableChem.Eng.2019,7,16428−16439.(15)Jiang,J.;Zhang,Q.;Zhan,X.;Chen,F.Amultifunctional(33)Marcano,D.C.;Kosynkin,D.V.;Berlin,J.M.;Sinitskii,A.;gelatin-basedaerogelwithsuperiorpollutantsadsorption,oil/waterSun,Z.;Slesarev,A.;Alemany,L.B.;Lu,W.;Tour,J.M.Improvedseparationandphotocatalyticproperties.Chem.Eng.J.2019,358,SynthesisofGrapheneOxide.ACSNano2010,4,4806−4814.1539−1551.(34)Takahara,Y.K.;Ikeda,S.;Ishino,S.;Tachi,K.;Ikeue,K.;(16)Zhang,Y.;Yin,M.;Lin,X.;Ren,X.;Huang,T.-S.;Kim,I.S.Sakata,T.;Hasegawa,T.;Mori,H.;Matsumura,M.;Ohtani,B.FunctionalnanocompositeaerogelsbasedonnanocrystallinecelluloseAsymmetricallyModifiedSilicaParticles:ASimpleParticulateforselectiveoil/waterseparationandantibacterialapplications.Chem.SurfactantforStabilizationofOilDropletsinWater.J.Am.Chem.Eng.J.2019,371,306−313.Soc.2005,127,6271−6275.(17)Lee,J.-H.;Park,S.-J.Recentadvancesinpreparationsand(35)Hou,Y.;Zhong,X.;Ding,Y.;Zhang,S.;Shi,F.;Hu,J.Alginate-applicationsofcarbonaerogels:Areview.Carbon2020,163,1−18.basedaerogelswithdoublecatalyticactivitysitesandhighmechanical(18)Li,Y.;Zhu,L.;Grishkewich,N.;Tam,K.C.;Yuan,J.;Mao,Z.;strength.Carbohydr.Polym.2020,245,116490.Sui,X.CO2-ResponsiveCelluloseNanofibersAerogelsforSwitchable(36)Yu,M.;Zhang,H.;Yang,F.HydrophilicandCompressibleOil-WaterSeparation.ACSAppl.Mater.Interfaces2019,11,9367−Aerogel:ANovelDrawAgentinForwardOsmosis.ACSAppl.Mater.9373.Interfaces2017,9,33948−33955.(19)Wang,F.;Lu,X.;Li,X.-y.Selectiveremovalsofheavymetals(37)Xu,B.;Maimaiti,H.;Wang,S.;Awati,A.;Wang,Y.;Zhang,J.;(Pb2+,Cu2+,andCd2+)fromwastewaterbygelationwithalginateforChen,T.Preparationofcoal-basedgrapheneoxide/SiOnanosheet2effectivemetalrecovery.J.Hazard.Mater.2016,308,75−83.andloadingZnOnanorodforphotocatalyticFenton-likereaction.(20)GhorbaniGorji,E.;Waheed,A.;Ludwig,R.;Toca-Herrera,J.Appl.Surf.Sci.2019,498,143835.L.;Schleining,G.;GhorbaniGorji,S.ComplexCoacervationofMilk(38)Zhou,S.;You,T.;Zhang,X.;Xu,F.SuperhydrophobicProteinswithSodiumAlginate.J.Agric.FoodChem.2018,66,3210−CelluloseNanofiber-AssembledAerogelsforHighlyEfficientWater-3220.in-OilEmulsionsSeparation.ACSAppl.NanoMater.2018,1,2095−(21)Xu,H.;Jiang,K.;Zhang,X.;Zhang,X.;Guo,S.;Zhou,H.2103.SodiumAlginateEnabledAdvancedLayeredManganese-Based(39)Yi,L.;Yang,J.;Fang,X.;Xia,Y.;Zhao,L.;Wu,H.;Guo,S.CathodeforSodium-IonBatteries.ACSAppl.Mater.InterfacesFacilefabricationofwood-inspiredaerogelfromchitosanforefficient2019,11,26817−26823.removalofoilfromWater.J.Hazard.Mater.2020,385,121507.(22)Tedeschi,G.;Benitez,J.J.;Ceseracciu,L.;Dastmalchi,K.;Itin,(40)Chen,H.-B.;Shen,P.;Chen,M.-J.;Zhao,H.-B.;Schiraldi,D.A.B.;Stark,R.E.;Heredia,A.;Athanassiou,A.;Heredia-Guerrero,J.A.HighlyEfficientFlameRetardantPolyurethaneFoamwithAlginate/SustainableFabricationofPlantCuticle-LikePackagingFilmsfromClayAerogelCoating.ACSAppl.Mater.Interfaces2016,8,32557−TomatoPomaceAgro-Waste,Beeswax,andAlginate.ACSSustainable32564.Chem.Eng.2018,6,14955−14966.(41)Long,S.;Feng,Y.;Liu,Y.;Zheng,L.;Gan,L.;Liu,J.;Zeng,X.;(23)Cheng,Y.;Lu,L.;Zhang,W.;Shi,J.;Cao,Y.ReinforcedlowLong,M.Renewableandrobustbiomasscarbonaerogelderivedfromdensityalginate-basedaerogels:Preparation,hydrophobicmodifica-deepeutecticsolventsmodifiedcellulosenanofiberunderalowtionandcharacterization.Carbohydr.Polym.2012,88,1093−1099.carbonizationtemperatureforoil-waterseparation.Sep.Purif.Technol.(24)Dai,J.;Tian,Q.;Sun,Q.;Wei,W.;Zhuang,J.;Liu,M.;Cao,Z.;2021,254,117577.Xie,W.;Fan,M.TiO2-alginatecompositeaerogelsasnoveloil/water(42)Li,J.;Xu,C.;Zhang,Y.;Wang,R.;Zha,F.;She,H.Robustseparationandwastewaterremediationfilters.Composites,PartBsuperhydrophobicattapulgitecoatedpolyurethanespongeforefficient2019,160,480−487.immiscibleoil/watermixtureandemulsionseparation.J.Mater.Chem.(25)Huang,T.;Shao,Y.-w.;Zhang,Q.;Deng,Y.-f.;Liang,Z.-x.;A2016,4,15546−15553.Guo,F.-z.;Li,P.-c.;Wang,Y.Chitosan-Cross-LinkedGraphene(43)Wang,B.;Yang,X.;Sha,D.;Shi,K.;Xu,J.;Ji,X.SilaneOxide/CarboxymethylCelluloseAerogelGlobuleswithHighFunctionalizedPolyvinyl-AlcoholFormaldehydeSpongesonFastOilStructureStabilityinLiquidandExtremelyHighAdsorptionAbility.Absorption.ACSAppl.Polym.Mater.2020,2,5309−5317.ACSSustainableChem.Eng.2019,7,8775−8788.(44)Mi,H.-Y.;Jing,X.;Politowicz,A.L.;Chen,E.;Huang,H.-X.;(26)Zhuo,H.;Hu,Y.;Chen,Z.;Peng,X.;Lai,H.;Liu,L.;Liu,Q.;Turng,L.-S.Highlycompressibleultra-lightanisotropiccellulose/Liu,C.;Zhong,L.LinkingRenewableCelluloseNanocrystalintographeneaerogelfabricatedbybidirectionalfreezedryingforselectiveLightweightandHighlyElasticCarbonAerogel.ACSSustainableoilabsorption.Carbon2018,132,199−209.Chem.Eng.2020,8,11921−11929.(45)Yi,L.;Xia,Y.;Tan,Z.;Fang,X.;Zhao,L.;Wu,H.;Guo,S.(27)Mi,H.-Y.;Jing,X.;Huang,H.-X.;Peng,X.-F.;Turng,L.-S.DesignoftubelikeaerogelswithmacroporesfrombamboofungusforSuperhydrophobicGraphene/Cellulose/SilicaAerogelwithHierarch-fastoil/waterseparation.J.CleanerProd.2020,264,121558.icalStructureasSuperabsorbersforHighEfficiencySelectiveOil(46)Li,Z.;Shao,L.;Hu,W.;Zheng,T.;Lu,L.;Cao,Y.;Chen,Y.AbsorptionandRecovery.Ind.Eng.Chem.Res.2018,57,1745−1755.Excellentreusablechitosan/celluloseaerogelasanoilandorganic(28)Feng,L.;Li,S.;Li,Y.;Li,H.;Zhang,L.;Zhai,J.;Song,Y.;Liu,solventabsorbent.Carbohydr.Polym.2018,191,183−190.B.;Jiang,L.;Zhu,D.Super-HydrophobicSurfaces:FromNaturalto(47)Xu,X.;Dong,F.;Yang,X.;Liu,H.;Guo,L.;Qian,Y.;Wang,A.;Artificial.Adv.Mater.2002,14,1857−1860.Wang,S.;Luo,J.PreparationandCharacterizationofCellulose(29)Zhao,S.;Malfait,W.J.;Guerrero-Alburquerque,N.;Koebel,M.GraftedwithEpoxidizedSoybeanOilAerogelsforOil-AbsorbingM.;Nyström,G.BiopolymerAerogelsandFoams:Chemistry,Materials.J.Agric.FoodChem.2018,67,637−643.Properties,andApplications.Angew.Chem.Int.Ed.2018,57,(48)Yue,X.;Zhang,T.;Yang,D.;Qiu,F.;Li,Z.Hybridaerogels7580−7608.derivedfrombananapeelandwastepaperforefficientoilabsorption(30)Li,N.;Chen,W.;Chen,G.;Wan,X.;Tian,J.Low-Cost,andemulsionseparation.J.CleanerProd.2018,199,411−419.Sustainable,andEnvironmentallySoundCelluloseAbsorbentwith(49)Xu,P.;Qian,P.;Yang,J.;Li,J.;Xia,Y.;Qian,W.;Duan,Z.HighEfficiencyforCollectingMethaneBubblesfromSeawater.ACSSuperhydrophobicandcompressiblecarbonaerogelsderivedfromSustainableChem.Eng.2018,6,6370−6377.platanusorientalisforoilabsorptionandemulsionseparation.J.(31)Zhang,X.;Wang,H.;Cai,Z.;Yan,N.;Liu,M.;Yu,Y.HighlyTaiwanInst.Chem.Eng.2019,103,209−216.CompressibleandHydrophobicAnisotropicAerogelsforSelective(50)Yang,J.;Xia,Y.;Xu,P.;Chen,B.Super-elasticandhighlyOil/OrganicSolventAbsorption.ACSSustainableChem.Eng.2018,7,hydrophobic/superoleophilicsodiumalginate/celluloseaerogelfor332−340.oil/waterseparation.Cellulose2018,25,3533−3544.892https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
11Langmuirpubs.acs.org/LangmuirArticle(51)Wang,Y.;Feng,Y.;Yao,J.Constructionofhydrophobicalginate-basedfoamsinducedbyzirconiumionsforoilandorganicsolventcleanup.J.ColloidInterfaceSci.2019,533,182−189.(52)Wang,C.;He,G.;Cao,J.;Fan,L.;Cai,W.;Yin,Y.UnderwaterSuperoleophobicandSalt-TolerantSodiumAlginate/N-SuccinylChitosanCompositeAerogelforHighlyEfficientOil−WaterSeparation.ACSAppl.Polym.Mater.2020,2,1124−1133.(53)Li,Y.;Zhang,G.;Gao,A.;Cui,J.;Zhao,S.;Yan,Y.RobustGraphene/Poly(vinylalcohol)JanusAerogelswithaHierarchicalArchitectureforHighlyEfficientSwitchableSeparationofOil/WaterEmulsions.ACSAppl.Mater.Interfaces2019,11,36638−36648.(54)Zhang,Y.-G.;Zhu,Y.-J.;Xiong,Z.-C.;Wu,J.;Chen,F.BioinspiredUltralightInorganicAerogelforHighlyEfficientAirFiltrationandOil-WaterSeparation.ACSAppl.Mater.Interfaces2018,10,13019−13027.(55)Maggay,I.V.;Wu,C.-J.;Guo,H.-R.;Liao,X.-L.;Chou,C.-J.;Chang,Y.;Lin,Y.-F.;Venault,A.SuperhydrophobicSiO2/poly-(vinylidenefluoride)compositemembranesforthegravity-drivenseparationofdrugenantiomersfromemulsions.J.Membr.Sci.2021,618,118737.(56)Yin,X.;Wang,Z.;Shen,Y.;Mu,P.;Zhu,G.;Li,J.Facilefabricationofsuperhydrophobiccopperhydroxidecoatedmeshforeffectiveseparationofwater-in-oilemulsions.Sep.Purif.Technol.2020,230,115856.(57)Bai,X.;Shen,Y.;Tian,H.;Yang,Y.;Feng,H.;Li,J.Facilefabricationofsuperhydrophobicwoodsliceforeffectivewater-in-oilemulsionseparation.Sep.Purif.Technol.2019,210,402−408.893https://dx.doi.org/10.1021/acs.langmuir.0c03229Langmuir2021,37,882−893
此文档下载收益归作者所有