《Controlling the Spin − Orbit Branching Fraction in Molecular Collisions - Heid et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterControllingtheSpin−OrbitBranchingFractioninMolecularCollisionsCorneliaG.Heid,ImogenP.Bentham,VictoriaWalpole,PabloG.Jambrina,F.JavierAoiz,andMarkBrouard*CiteThis:J.Phys.Chem.Lett.2021,12,310−316ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Thecollisiongeometry,thatis,therelativeorientationofreactantsbeforeinteraction,canhavealargeeffectonhowacollisionorreactionproceeds.Certaingeometriesmaypreventaccesstoagivenproductchannel,whileothersmightenhanceit.InthisLetter,wedemonstratehowtheinitialorientationofNOmoleculesrelativetoapproachingAratomsdeterminesthebranchingbetweenthespin−orbitchangingandthespin−orbitconservingrotationalproductchannels.Weusearecentlydevelopedquantumtreatmenttocalculatedifferentialandintegralbranchingfractions,atanyarbitraryorientation,fromtheoreticalandexperimentaldatapoints.Ourresultsshowthatasubstantialdegreeofcontroloverthefinalspin−orbitstateofthescatteringproductscanbeachievedbytuningtheinitialcollisiongeometry.nmanyinelasticorreactivemolecularencounters,theHere,weinvestigatetheimplicationsofhavingfullcontrolIspatialarrangementinwhichthecollisionpartnersapproachovertherangeofpossiblecollisiongeometriesintermsoftheeachotherplaysavitalroleindeterminingtheoutcomeofthespin−orbitbranchingfractionsinthescatteringofNOinteraction.WhilearelativegeometrythatalignswiththemoleculeswithAratoms.Weshowhowourrecentlyreactioncoordinatewillfacilitateproductformation,1,2adevelopedquantummechanical(QM)treatmentofthe19,23geometryinwhichaccessofthereactioncoordinateisscatteringdynamicsforelectricfieldorientedmolecules3,4canbeemployedtopredictspin−orbitbranchingfractionsasahinderedwilllessefficientlyleadtoproducts.Thetrajectoryfunctionofinitialrelativeorientationofthecollisionpartners,amoleculeoratomapproachingfromaspecificdirectionwillfrombothcalculatedandexperimentallymeasuredquantities.DownloadedviaCLARKUNIVonMay16,2021at05:39:36(UTC).followisgovernedbytheattractiveandrepulsiveforcesthatWeusetheNO+Arcollisionsystemasanillustrativeexample,makeupthelocalenergylandscape.Controlovertheinitialbutthemethodcouldpotentiallybeextendedtolargerorientationthusalsoprovidescontroloverthereactionorsystems,forwhichtheidentificationoftheoptimumcollision5−8collisionpathway.Inaddition,theremightbecompetinggeometrythatmaximizestheyieldofacertainproductchannelSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.pathwaysassociatedwithdifferentproductchannels,andmightbeveryvaluable.alteringtheinitialspatialconfigurationmayfavoronechannelOwingtoitsunpairedelectron,theNOmoleculepossessesa9overanother.spincomponentandanelectronicangularmomentumwith1,7,9−11MoleculescanbealignedwithpolarizedlaserlightorprojectionsΣ=±1/2andΛ=±1,respectively,ontothe6,12−1516−18orientedinanelectricormagneticfield;theseintermolecularaxis.Thisgivesrisetotwospin−orbittechniquesmakeitpossibletodefineparallelorperpendicularmanifolds,specifiedbythespin−orbitquantumnumberΩ=1,7,9,10Σ+Λ.Thelowerlyingstatecorrespondsto|Ω|=1/2andthe(alignment)and“end-on”or“side-on”collisiongeo-metries(orientation).6,12−15,19PreviousworkonorientedNOhigherlyingstateto|Ω|=3/2.Withinbothmanifolds,each+raregascollisionshasfocusedonend-oncollisions,inwhichrotationalstateisfurthersplitintotwoΛ-doubletlevelswiththeraregasatomapproachestheNOfromeithertheN-endorsymmetryindices1(e)and−1(f).Inourexperiments,we15,20−22theO-end.Morerecently,wehaveinvestigatedside-oncollisions,inwhichwedistinguishedbetween(predominantly)Received:September25,2020repulsivecollisionstowardtheN-sideortowardtheO-sideofAccepted:December14,2020theNOmolecule.19,23,24However,inprinciple,ourexper-Published:December22,2020imentalsetupallowsfororientationoftheNOmolecules(as15definedbyabroadcosinedistribution)atanyarbitraryanglerelativetothecollisionpartner.©2020AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c02941310J.Phys.Chem.Lett.2021,12,310−316
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.Definitionoftheelectricfielddirectioninthescatteringframe(a),side-onorientation(b),andend-onorientation(c).Thez-axisinthescatteringframeisdefinedparalleltotherelativevelocityvector,k=vAr−vNO,andthe+xz-planeisthatcontainingkandk′,wherek′=v′Ar−v′NOistherelativevelocityvectorafterthecollision.θisthescatteringangle,andθEandϕEarethepolarandazimuthalanglesoftheelectricfieldvector,E.TheorientationsoftheNOmoleculein(b)and(c)arelabeledaccordingtotheaxisalongwhichEispointing.Notethattheelectricfield15createsacosinedistributionofpossibleNOorientations;thedipolemomentpointingantiparalleltotheEvectoristhemostprobableone.19,26employahexapoletoselecttheinitial|j=1/2,m,|Ω|=1/2,f⟩crosssections,andαandβarethefield-dependentmixingquantumstateoftheNOmolecules(wherej=1/2istheparametersmentionedabove.13,25TheR(k)(θ)quantifytheqrotationalgroundstate,whichcanonlybeoriented,andmitsdependenceofthecollisionoutcomeonthepolarizationoftheprojectionontotherelativevelocityvector,k),beforebondaxis(asafunctionofscatteringangle),withtheisotropicsubjectingthemtoastaticelectricfield.Intheelectricfield,R(0)(θ)momentequaltothenormalizedDCSintheabsence0theinitiallypurefstatewavefunctionevolvesintoaofreagentpolarization,butinthepresenceofanorientation19superpositionoftheeandfstatewavefunctions,andtheirfield.relativecontributions,whicharedependentonthestrengthofForagivenθEangle,andϕE=0°orϕE=180°,wecanwritetheelectricfield,arequantifiedbythemixingparametersαandβ(seeSupportingInformation).13,25SincethefΛ-doubletϕE=°0/180°σiso(0)(1)[]d()σθθ=[−RR0()θα|βθθ|(cosE0()stateislow-fieldseeking,thedipolemoment(N→O)oftheE2πstateselectedmoleculeswillorientantiparalleltotheelectric±]2sinθθR(1)())E1(2)fieldvector,E,duetotheStarkeffect.Byswitchingthepolarizationoftheelectricfield,wecanchangetheorientationComputationally,theR(k)(θ)momentscanbecalculatedqofthemoleculesinagivenconfigurationby180°.readilyfromthescatteringamplitudes(seetheSupportingWedefinetheorientationoftheelectricfieldwithintheInformation).Experimentally,theR(0)(θ)momentcanbe0scatteringframe,asillustratedinFigure1.Fortheanalysisextractedfromthesumofthevelocity-mapionimagesforthepresentedbelow,wefocusonin-plane(andnear-side)twoside-on,orthetwoend-on,orientations.Similarly,thescattering,withElyingwithintheplaneoftheinitialandR(1)(θ)andR(1)(θ)momentscanbedeterminedfromthe01finalrelativevelocityvectors,kandk′,respectively.Wecandifferenceimageforthetwoend-onandthetwoside-onthuscoverthefullrangeofpossibleorientationsbysamplingorientations,respectively.19,23KnowledgeofallthreeR(k)(θ)qthepolarangleθEbetween0°and180°atfixedazimuthalmoments,andsubstitutionintoeq1,wouldthenallowanglesofϕE=0°andϕE=180°.PanelsbandcofFigure1calculationoftheDCSatanyarbitraryorientation.Notethatalsoshowtheelectricfieldvectorandthemostprobableforend-onorientation,θE=0°or180°andthethirdterminorientationoftheNOmoleculeforthetwoside-on(b)andeq1goestozero,whileforside-onorientation,θE=90°,andthetwoend-on(c)configurations.Thelabels“+x”and“−x”thesecondterm,containingtheR(1)(θ)moment,goestozero.0correspondtorepulsivecollisionsoftheAratomofftheN-sideToillustratetheabovediscussion,theR(0)(θ)andR(1)(θ)01andO-side,while“+z”and“−z”correspondtorepulsivemomentsextractedfromtheionimagesintheside-oncollisionstowardtheO-endandN-end,respectively(thelabelsorientationarecomparedtotheQMcalculatedmomentsinindicatethedirectionofEineachcase).19,23Figure2forthej′=5.5e−10.5efinalstates.TransitionswithinAsshowninourpreviouswork,foranarbitrarythegroundspin−orbitmanifold(ΔΩ=0)areshownontheorientation,definedbytheelectricfieldvectorinthescatteringleft-handside,andtransitionsintothespin−orbitchangingframe,thedifferentialcrosssection(DCS),forinitialj=1/2,manifold(ΔΩ=1)areshownontheright-handside.Thecanbeexpressedintermsofthebond-axis-polarization-19,26agreementbetweentheexperimentandcalculationsisgooddependentdifferentialcrosssections(r-PDDCSs):overall.ThemostsignificantdeviationsareobservedintheR(0)(θ)momentforj′=7.5eand9.5e(inbothspin−orbitϕEσiso(0)(1)0[]d()σθθ=[−RR0()θα|βθθ|(cosE0()manifolds),wheretheexperimentalmomentisnotquiteableE2πtoreproducethedouble-peakedfeaturesintheQM(1)−]2sinθϕθEcosER1())(1)calculation.Thisisbecausethemainscatteringintensityoverlapswiththepositionofzerolaboratoryvelocity,whereHere,σisoisthe“isotropic”integralcrosssection(ICS)intheevensmallinaccuraciesintheinstrumentfunctionbecomepresenceofafield,theR(k)(θ)arether-polarization-dependentmagnified.23q311https://dx.doi.org/10.1021/acs.jpclett.0c02941J.Phys.Chem.Lett.2021,12,310−316
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterϕ=°0/180°[]dσEfracθEϕ=°0/180°[]dσEΔΩ=1θE=ϕ=°0/180°ϕ=°0/180°[]ddσσE+[]EΔΩ=1θEΔΩ=0θE(3)Theabilitytodeterminethedifferentialbranchingfractionatanyarbitraryorientationenablesustoquantifytheextentofcontroloverthecollisionoutcomeachievablebyvaryingthecollisiongeometry.Figure3showstheQMcalculatedbranchingfractionsasafunctionofthescatteringangle,θ(y-axis),andtheinitialrelativeorientationoftheNOandArcollisionpartners,asdefinedbytheanglesoftheelectricfield,θEandϕE(x-axisinthefigure).Thebranchingfractionsareshownforj′=5.5e−10.5e;therightpanelforeachstatecorrespondstoϕE=0°andtheleftpaneltoϕE=180°.NotethatθE=0°correspondstothe+z(O-end)orientationandθE=180°tothe−z(N-end)orientation,irrespectiveofϕE.The±zand±xorientationsareindicatedatthetopofthefigure.Redindicatesdominanceofthespin−orbitchangingtransition(dσfrac>0.5),whileyellowindicatesdominanceofthespin−orbitconservingtransition(dσfrac<0.5).Themaximainthespin−orbitfractionsareduetosomecombinationoflocalmaximum,orsignificantscatteringintensity,inthespin−orbitchangingmanifold,andlocalminimum,orlowscatteringintensity,inthespin−orbitconservingmanifold.Itisremarkablehowthespin−orbitbranchingfractioncanbechangedbyvaryingtheorientationoftheelectricfield.Figure3demonstratesthat,iftheinitialgeometryofthecollisionsystemcanbedefined,therelativeyieldsofspecificproductchannelsatagivenscatteringanglecanbecontrolled.Forexample,inthecaseofj′=8.5ethecontributionofΩ′=3/2canbemaximizedtodσfrac≈1inthebackwardscatteredregionbysettingtheorientationfieldnearlyperpendiculartotherelativevelocityvector(−zorientation).Conversely,itscontributionatthesamescatteringanglescanbereducedtolessthan0.1bysettingθE=45°andϕE=180°.Analogously,ifwewantedtooptimizetherelativeyieldofspin−orbitchangingproductsinthebackwardscatteredregionofthej′=6.5estate,wewouldorienttheelectricfieldinourexperimentattheanglesofθE∼135°andϕE=0°.Asimilardependenceofthebranchingfractionontheinitialorientationisobservedfortheotherj′statesshowninFigure3.ThisdependencecanbeinterpretedinageneralpictureinwhichreactantsfollowacertainpathwaytoproductsdependingonFigure2.ComparisonoftheexperimentalandQMcalculatedtheirinitialpositiononthepotentialenergysurface(PES)andpolarizationmomentsforj′=5.5e−10.5e(toptobottom)inthetheinternalandtranslationalenergytheypossessatthatpoint.spin−orbitconserving(ΔΩ=0,left,takenfromref23)andchanging(ΔΩ=1,right)manifolds.TheexperimentalR(0)(θ)andR(1)(θ)Bycarefullychoosingtheinitialgeometry,ascatteringprocess01momentsareshowninredandblue,andtheirQMcounterpartsareorreactioncanthusbetunedinfavorofaparticularoutcome.representedbythepurpleandgreendashedlines,respectively.TheByintegrationofthedifferentialcrosssectionsforgivenθEerrorbarsintheexperimentaldatacorrespondtoonestandardandϕEangles,wecantestwhetherthedependenceonthedeviation.TheQMdatawereaveragedovertheexperimentalcollisioninitialrelativeorientationsurvivesintheintegralspin−orbitenergydistributionwithameanof651cm−1.branchingfractions.TheintegralcrosssectionsareobtainedbyintegratingtheDCSsineq2:ϕE=°0/180°σiso(0)(1)(1)σθE=[−rrr0||αβ(cosθE0±2sinθE1)]2πThespin−orbitbranchingfraction,thatis,thefractionofthe(4)wherether(k)momentsaretheintegratedR(k)(θ)moments,26spin−orbitchangingtransitiontothesumofthetransitionsqqintobothmanifolds,canthenbeevaluatedatanygiven+1()k()krq=∫Rq()d(cos)θθorientation:−1(5)312https://dx.doi.org/10.1021/acs.jpclett.0c02941J.Phys.Chem.Lett.2021,12,310−316
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.ContourplotsshowingthedifferentialQMspin−orbitbranchingfractionsasafunctionofthescatteringangle,θ(y-axis),andthepolarangleoftheelectricfield,θE(x-axis),forj′=5.5e−10.5e.TheθEanglescorrespondingtothe±zandthe±xconfigurationsareindicatedatthetop.Notethattheright-handsideforeachstatecorrespondstoϕE=0°andtheleft-handsidetoϕE=180°(seeSupportingInformation).Theblacklineindicatesabranchingfractionof0.5.Thecalculationswererunattheexperimentalfieldstrengthusingacollisionenergyof651cm−1.SinceR(0)isthenormalizedisotropicDCS,r(0)isequaltobecalculatedanalogouslytothedifferentialbranching00one.Ther(1)andr(1)moments,fortheirpart,aredirectlyfractions:10relatedtotheintegralstericasymmetry(ISA)forthex-andz-23[]σϕE=°0/180°axisorientations,respectively,ϕ=°0/180°ΔΩ=1θ[σ]=EEfracθEϕ=°0/180°ϕ=°0/180°(1)Sx[]σσE+[]Er1=ΔΩ=1θEΔΩ=0θE2||αβ(6)(9)(1)SzThetoppanelinFigure4showstheexperimentalintegralr0=branchingfractionsobtainedusingtheSxandSzvaluesfrom||αβ(7)15,21,23,24previousmeasurements.ThesearecomparedwiththewhereSxandSzaretheISAsforthex-axis(side-on)andz-axisQMcalculatedbranchingfractionsinthebottompanel.Since(end-on)configurations,respectively,asdefinedintheintheseexperimentswehavenotmeasuredtherelativecrossSupportingInformation.TheISAisameasureoftheintegralsectionsforthetwospin−orbitmanifolds,proportionaltoσiso,preferenceofoneorientationovertheotherforagiventheexperimentalICSratioswerescaledtotheQMICSratiosproductrotationalstate.Usingtherelationshipsineq6and7,toallowadirectcomparisonbetweenexperimentandtheory.theintegralcrosssectionscanberewrittenintermsofSxandThetheoreticalisotropicspin−orbitbranchingfractionsandSz:theirdependenceonthestaticfieldstrengthareshownintheσSupportingInformation.Notethat,inprinciple,therequiredϕ=°0/180°isoσE=−±(1cosθθSSsin)θEEEzx(8)crosssectionratiosforspin−orbitconservingandchanging2πcollisionscouldbedeterminedrelativelystraightforwardlyfromTheintegralcrosssectionscanthusbecalculatedsolelyfromtheresonantlyenhancedmultiphotonionization(REMPI)theexperimental(orQM)ISAsintheside-onandtheend-onspectrumorlaser-inducedfluorescencemeasurementsoftheorientations.Usingtheintegralcrosssectionsforbothspin−scatteredNO(X),ashasbeenundertakeninprevious27,28orbitmanifolds,theintegralspin−orbitbranchingfractionscanwork.313https://dx.doi.org/10.1021/acs.jpclett.0c02941J.Phys.Chem.Lett.2021,12,310−316
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterpreferenceforN-side/N-endcollisionswasobserved,inthe21,2429spin−orbitexcitedstate.AlexanderhasshownthatforpureHund’scase(a)molecules,ΔΩ=0andΔΩ=1transitionscanbeassumedtooccuronthehalf-sum(Vsum)andhalf-difference(Vdiff)potentials,respectively.ThesepotentialsreflectthepreferentiallocationoftheunpairedelectronlyingclosertotheNatomoftheNOmolecule,eitherinoroutoftheplanedefinedbythethreeatoms29−31(correspondingtotheA′andA″PESs,respectively).Theconfigurationinwhichtheelectronisintheplaneofthethreeatoms(i.e.,ontheA′PES)facilitatestheinteractionbetweentheincomingAratomandtheloneelectronnecessary24forspin−orbitchangingtransitionstooccur.ThemaximafortheevenΔjtransitionsaroundθE=135°/ϕE=0°inFigure4,whichcorrespondtocollisionsneartheNatom,areamanifestationoftheoverallshifttowardanN-side/N-endpreference.Theoppositeorientation,correspondingtoθE∼45°/ϕE=180°,isintheregionoftheminimaofthebranchingfractions.Thus,placingtheelectricfieldatapproximatelyθE=135°fromtherelativevelocityvectorwillmaximizethespin−orbitchangingintegralfractionfortheevenΔjtransitions,whentheAratomapproachestowardtheNatom,whileconcomitantlyminimizingthefractionfortrajectoriestowardtheOatom.Ouranalysisofthespin−orbitbranchingfractionsshowsthattheabilitytoselecttheinitialorientationoftheNOmoleculespriortocollisionprovidesalargedegreeofcontroloverthespin−orbitbranchingfraction.TheimplicationsofourresultsmaybegeneralizedtoothersystemswithanasymmetricPESandatleasttwocompetingproductchannels.Figure4.Fractionofthespin−orbitchangingintegralcrosssectiontoWeexpectthatthemoreasymmetricthepotentialenergythesumoftheICSsforthetwospin−orbitmanifolds,asafunctionoflandscape,themoreimportanttheinitialorientationwillbeinθE,forj′=5.5e−10.5e.Thetoppanelshowsthefractionsobtaineddefiningtherelativepopulationsoftheaccessibleproductfromtheexperimentalstericasymmetries(witherrorbarsstates.Inthecurrentwork,themaximaofthespin−orbitrepresentingonestandarddeviation);thebottompanelshowsthechangingfractionsfortheevenΔjtransitionsneartheNatomcalculatedQMfractions,whichhavebeenaveragedovertheofthemoleculereflectthepositionoftheunpairedelectron,24experimentalcollisionenergydistribution.EvenΔjtransitionsareanditmightbeexpectedthatothercollisionprocessesorrepresentedinpurple,andoddΔjtransitionsinorange.TheθEanglesreactions,inwhichunpairedorweaklyboundelectronsarecorrespondingtothe±zandthe±xconfigurationsareindicatedatinvolved,willshowasimilarsensitivitytothelocationofthethetopofthefigure.Theright-handsidecorrespondstoϕE=0°andtheleft-handsidetoϕE=180°.relevantelectronicorbitals.ThecurrentQMtreatmentcanbeappliedtootherlinearopen-shellmolecules,suchasOH,TheexperimentalandQM-field-dependentintegralspin−whichisslightlymorecomplexthanNOduetoits|Ω|=3/2orbitbranchingfractionsshowninFigure4areingoodgroundspin−orbitstate.Althoughthedegreeofcomplexityagreement,whichisnotunexpectedgiventhegenerallywillincreasefurther,webelievethatitisalsopossibletoextendexcellentagreementbetweenexperimentalandQMintegralthetheorytosymmetricandasymmetrictops.Thecapabilitiesstericasymmetriesfoundinthepreviousstudies.15,21,23,24Asoftheexperimentalmethodsusedinourstudycouldbealreadyobservedinthedifferentialbranchingfractions(Figureexpandedaswell.Inparticular,itmightbepossibletoperform323),theintegralbranchingfractionsvaryasafunctionofelectriclaseralignmentwithinanelectricfieldsothat“heads”andfieldorientation,roughlyaveragingbetween0.2and0.3.The“tails”maybedistinguished.ThiswouldprovideameansforvariationsaremorepronouncedfortheevenΔjtransitionsstateselectionwithouttheneedofahexapoleandthe(purplelines),wherethefractionsspanarangefromabout0.1limitationtoenergeticallylow-lyingquantumstates.Moreover,to0.45,andaremoresubtlefortheoddΔjtransitions(orangeitwillbeinterestingtoseeiffullcontrolovertheinitiallines).ComparisonwithFigure3revealsthatthemaximaforgeometrycanbeimplementedincollisionprocessesandtheevenΔjtransitionsaroundθE=135°/ϕE=0°aremainlyreactionsinsolution,onsurfaces,orongas−liquidinterfaces.duetoastrongspin−orbitexcitedcontributioninthebackwardscatteredregion(θ≥60°).■ASSOCIATEDCONTENTTheintegralstericasymmetriesmeasuredintheside-onand*sıSupportingInformationtheend-onorientationsexhibitedanN-side/N-endpreferenceTheSupportingInformationisavailablefreeofchargeatforoddΔj,andanO-side/O-endpreferenceforevenΔjinhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c02941.15,21,23,24bothspin−orbitmanifolds.However,whilethemagnitudeoftheN-side/N-endpreferencewasrelativelyComputationalandexperimentalmethods,branchingsimilarinthetwomanifolds,themagnitudeforO-side/O-endfractionsforanisotropicdistributioninthepresenceandcollisionswassignificantlydiminished,andanoverallabsenceofanelectricfield(PDF)314https://dx.doi.org/10.1021/acs.jpclett.0c02941J.Phys.Chem.Lett.2021,12,310−316
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter■(8)Perreault,W.E.;Mukherjee,N.;Zare,R.N.HD(v=1,j=2,m)AUTHORINFORMATIONorientationcontrolsHD-Herotationallyinelasticscatteringnear1K.CorrespondingAuthorJ.Chem.Phys.2019,150,174301.MarkBrouard−DepartmentofChemistry,Universityof(9)Wang,F.;Lin,J.;Liu,K.StericcontrolofthereactionofCHOxford,TheChemistryResearchLaboratory,OxfordOX1stretch−excitedCHD3withchlorineatom.Science2011,331,900−3TA,UnitedKingdom;orcid.org/0000-0003-3421-903.0850;Email:mark.brouard@chem.ox.ac.uk(10)Perreault,W.E.;Mukherjee,N.;Zare,R.N.Coldquantum-controlledrotationallyinelasticscatteringofHDwithH2andD2Authorsrevealscollisionalpartnerreorientation.Nat.Chem.2018,10,561−CorneliaG.Heid−DepartmentofChemistry,Universityof567.Oxford,TheChemistryResearchLaboratory,OxfordOX1(11)Sharples,T.R.;Leng,J.G.;Luxford,T.F.M.;McKendrick,K.3TA,UnitedKingdomG.;Jambrina,P.G.;Aoiz,F.J.;Chandler,D.W.;Costen,M.L.Non-intuitiverotationalreorientationincollisionsofNO(A2Σ+)withNeImogenP.Bentham−DepartmentofChemistry,UniversityofOxford,TheChemistryResearchLaboratory,OxfordOX1fromdirectmeasurementofafour-vectorcorrelation.Nat.Chem.3TA,UnitedKingdom2018,10,1148−1153.(12)Jones,E.M.;Brooks,P.R.Focusingandorientingasymmetric-VictoriaWalpole−DepartmentofChemistry,Universityoftopmoleculesinmolecularbeams.J.Chem.Phys.1970,53,55−58.Oxford,TheChemistryResearchLaboratory,OxfordOX1(13)vanLeuken,J.;Bulthuis,J.;Stolte,S.;Snijders,J.Steric3TA,UnitedKingdomasymmetryinrotationallyinelasticstate-resolvedNO-Arcollisions.PabloG.Jambrina−DepartamentodeQuímicaFísica,Chem.Phys.Lett.1996,260,595−603.UniversidaddeSalamanca,37008Salamanca,Spain;(14)vanBeek,M.C.;Berden,G.;Bethlem,H.L.;terMeulen,J.J.orcid.org/0000-0001-8846-3998MolecularreorientationincollisionsofOH+Ar.Phys.Rev.Lett.2001,F.JavierAoiz−DepartamentodeQuímicaFísica,Facultadde86,4001−4004.Química,UniversidadComplutense,28040Madrid,Spain;(15)Nichols,B.;Chadwick,H.;Gordon,S.D.S.;Eyles,C.J.;orcid.org/0000-0001-5718-5905Hornung,B.;Brouard,M.;Alexander,M.H.;Aoiz,F.J.;Gijsbertsen,Completecontactinformationisavailableat:A.;Stolte,S.StericeffectsandquantuminterferenceintheinelasticscatteringofNO(X)+Ar.Chem.Sci.2015,6,2202−2210.https://pubs.acs.org/10.1021/acs.jpclett.0c02941(16)Boca,A.;Friedrich,B.Finestructure,alignment,andorientationof32S16Oand16O18OmoleculesincongruentelectricNotesandmagneticfields.J.Chem.Phys.2000,112,3609−3619.Theauthorsdeclarenocompetingfinancialinterest.(17)Zou,J.;Gordon,S.D.S.;Tanteri,S.;Osterwalder,A.StereodynamicsofNe(3P)reactingwithAr,Kr,Xe,andN.J.Chem.22■Phys.2018,148,164310.ACKNOWLEDGMENTS(18)Gordon,S.D.S.;Omiste,J.J.;Zou,J.;Tanteri,S.;Brumer,P.;F.J.A.andP.G.J.thankProf.EnriqueVerdascoforhishelpwithOsterwalder,A.Quantum-state-controlledchannelbranchingincoldthecalculations.FundingbytheUKEPSRC(toM.B.viaNe(3P)+Archemi-ionization.Nat.Chem.2018,10,1190−1195.2ProgrammeGrantEP/L005913/1andEP/T021675/1)and(19)Heid,C.G.;Walpole,V.;Brouard,M.;Aoiz,F.J.;Jambrina,P.theSpanishMinistryofScienceandInnovation(grantG.Side-impactcollisionsofArwithNO.Nat.Chem.2019,11,662−MINECO/FEDER-PGC2018-096444−B-I00)isgratefully668.acknowledged.P.G.J.acknowledgesfundingbytheFundacioń(20)Brouard,M.;Chadwick,H.;Gordon,S.D.S.;Hornung,B.;SalamancaCityofCultureandKnowledge(programmeforNichols,B.;Aoiz,F.J.;Stolte,S.StereodynamicsinNO(X)+ArattractingscientifictalenttoSalamanca).inelasticcollisions.J.Chem.Phys.2016,144,224301.(21)Brouard,M.;Gordon,S.D.S.;HackettBoyle,A.;Heid,C.G.;Nichols,B.;Walpole,V.;Aoiz,F.J.;Stolte,S.Integralsteric■REFERENCESasymmetryintheinelasticscatteringofNO(X2Π).J.Chem.Phys.(1)Pan,H.;Wang,F.;Czako,G.;Liu,K.Directmappingofthé2017,146,014302.angle-dependentbarriertoreactionforCl+CHD3usingpolarized(22)Brouard,M.;Gordon,S.D.S.;Nichols,B.;Walpole,V.;Aoiz,scatteringdata.Nat.Chem.2017,9,1175−1180.F.J.;Stolte,S.Differentialstericeffectsintheinelasticscatteringof(2)Sun,Z.-F.;vanHemert,M.C.;Loreau,J.;vanderAvoird,A.;NO(X)+Ar:Spin-orbitchangingtransitions.Phys.Chem.Chem.Phys.Suits,A.G.;Parker,D.H.MolecularsquaredancinginCO-CO2019,21,14173−14185.collisions.Science2020,369,307−309.(23)Walpole,V.;Heid,C.G.;Jambrina,P.G.;Aoiz,F.J.;Brouard,(3)deMiranda,M.H.G.;Chotia,A.;Neyenhuis,B.;Wang,D.;M.StericeffectsintheinelasticscatteringofNO(X)+Ar:Side-onQueméner,G.;Ospelkaus,S.;Bohn,J.L.;Ye,J.;Jin,D.S.Controllinǵorientation.J.Phys.Chem.A2019,123,8787−8806.thequantumstereodynamicsofultracoldbimolecularreactions.Nat.(24)Heid,C.G.;Bentham,I.P.;Walpole,V.;Gheorghe,R.;Phys.2011,7,502−507.Jambrina,P.G.;Aoiz,F.J.;Brouard,M.Probingthelocationofthe(4)Xie,Y.;Zhao,H.;Wang,Y.;Huang,Y.;Wang,T.;Xu,X.;Xiao,unpairedelectroninspin-orbitchangingcollisionsofNOwithAr.C.;Sun,Z.;Zhang,D.H.;Yang,X.QuantuminterferenceinH+HDPhys.Chem.Chem.Phys.2020,22,22289−22301.→H2+Dbetweendirectabstractionandroaminginsertion(25)deLange,M.;Drabbels,M.;Griffiths,P.;Bulthuis,J.;Stolte,S.;pathways.Science2020,368,767−771.Snijders,J.Stericasymmetryinstate-resolvedNO-Arcollisions.Chem.(5)Loesch,H.J.;Remscheid,A.Bruteforceinmolecularreactiondynamics:Anoveltechniqueformeasuringstericeffects.J.Chem.Phys.Lett.1999,313,491−498.Phys.1990,93,4779−4790.(26)Aoiz,F.J.;Martínez,M.T.;Saez-Rábanos,V.Quasi-classicaĺ(6)Gijsbertsen,A.;Linnartz,H.;Taatjes,C.A.;Stolte,S.Quantumtreatmentofthestereodynamicsofchemicalreactions:k-r-k′vectorinterferenceasthesourceofstericasymmetryandparitypropensitycorrelationfortheLi+HF(v=1,j=1)→LiF+Hreaction.J.Chem.rulesinNO-raregasinelasticscattering.J.Am.Chem.Soc.2006,128,Phys.2001,114,8880−8896.8777−8789.(27)Lin,A.;Antonova,S.;Tsakotellis,A.P.;McBane,G.C.Λ(7)Perreault,W.E.;Mukherjee,N.;Zare,R.N.QuantumcontrolofDoubletpropensitiesinAr-NOrotationallyinelasticscatteringat220molecularcollisionsat1K.Science2017,358,356−359.meV.J.Phys.Chem.A1999,103,1198−1205.315https://dx.doi.org/10.1021/acs.jpclett.0c02941J.Phys.Chem.Lett.2021,12,310−316
6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(28)Joswig,H.;Andresen,P.;Schinke,R.ElectronicfinestructuretransitionsandrotationalexcitationinNOraregascollisions.J.Chem.Phys.1986,85,1904−1914.(29)Alexander,M.H.Rotationallyinelasticcollisionsbetweenadiatomicmoleculeina2Πelectronicstateandastructurelesstarget.J.Chem.Phys.1982,76,5974−5988.(30)Alexander,M.H.QuantumtreatmentofrotationallyinelasticcollisionsinvolvingmoleculesinΠelectronicstates:Newderivationofthecouplingpotential.Chem.Phys.1985,92,337−344.(31)Alexander,M.H.DifferentialandintegralcrosssectionsfortheinelasticscatteringofNO(X2Π)byArbasedonanewabinitiopotentialenergysurface.J.Chem.Phys.1993,99,7725−7738.(32)Friedrich,B.;Herschbach,D.Manipulatingmoleculesviacombinedstaticandlaserfields.J.Phys.Chem.A1999,103,10280−10288.316https://dx.doi.org/10.1021/acs.jpclett.0c02941J.Phys.Chem.Lett.2021,12,310−316
此文档下载收益归作者所有