the cross-section of stock returns and cash flow risk

the cross-section of stock returns and cash flow risk

ID:7303608

大小:571.79 KB

页数:21页

时间:2018-02-11

the cross-section of stock returns and cash flow risk_第1页
the cross-section of stock returns and cash flow risk_第2页
the cross-section of stock returns and cash flow risk_第3页
the cross-section of stock returns and cash flow risk_第4页
the cross-section of stock returns and cash flow risk_第5页
资源描述:

《the cross-section of stock returns and cash flow risk》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、DoctoralSeminarinEmpiricalFinanceTopic6TheCross-SectionofStockReturnsandCashFlowRiskLecturer:LarsA.LochstoerLondonBusinessSchoolJanuary31,20081Wheredobetascomefrom?AssumealinearSDF(canbeobtainedbylinearizinganymodel)withKfactors,Ft–Thismodelimpliese0EtRit+1=itt:–The’saretheassetreturn’scon

2、ditionalsensitivitytotheriskfactors,Ft.Inthistopic:thinkaboutthedriversofrealizedassetreturnsandwheretheco-movementfromthefactorscomefrom–Commonmovementsindiscountrates?–Commonmovementsincash‡ows?Letmeknowofanyerrors,please.ThesenotesdrawontheexcellentPhDcourseinempirical…nanceItookatBerkeley,

3、taughtbyGregoryR.Du¤ee.Contactinfo:LarsLøchstøer,P222,LondonBusinessSchool,SussexPlace,Regent’sPark,NW14SA,London,UnitedKingdom.E-mail:LLochstoer@london.edu0Campbell’s(1991)decompositionforassetreturnsCampbell-Shillerdecomposition:P1P1j1j1ptdt=k+dt+jht+j:j=1j=1Solveforlogreturnint+1P1P1

4、j1j1ht+1=k(ptdt)+dt+jht+j:j=1j=2Takeexpectationsasoftandt+1P1P1j1j1Et[ht+1]=k(ptdt)+Et[dt+j]Et[ht+j]:j=1j=2P1P1j1j1ht+1=k(ptdt)+Et+1[dt+j]Et+1[ht+j]:j=1j=2Subtracttheformerfromthelatter:P1P1j1j1ht+1Et[ht+1]=(Et+1Et)dt+j(Et+1Et)ht+j:j=1j=2Shorthandlanguage:–New

5、saboutcurrentandexpectedfuturecash‡owsP1j1d;t+1=(Et+1Et)dt+jj=1–NewsaboutexpectedfuturereturnsP1j1h;t+1=(Et+1Et)t+1ht+jj=2Innovationinassetreturn(withtilde)isdi¤erencebetweennewsaboutcash‡owsandnewsaboutreturnsh~t+1=d;t+1h;t+1Wecaninterpretthisequationineitherrealornominalterms.1W

6、ecanfurtherdecomposereturnsintorisk-freereturnandexcessreturn:ht+1=rt+1+et+1Impliescorollarydecomposition(noteindexes)P1j1et+1Et[et+1]=(Et+1Et)t+1dt+jj=1P1P1j1j1(Et+1Et)rt+j(Et+1Et)et+j:j=2j=2I.e.,innovationinexcessreturnisnewsaboutcash‡ows,lessnewsaboutfuturerisklessratesandfutur

7、eexcessreturnse~t+1=d;t+1r;t+1e;t+1:ImplementingtheCampbell(1991)decompositionusingaVARAssumethatlogreturns,logD/P,perhapsothervariablesfollowaVAR:01pt+1dt+1BCzt+1=@ht+1Axt+1zt+1=Azt+~zt+1;z~t+1N(0;)Estimatemodelin

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。