the maximum principle mixed inequality constraints

the maximum principle mixed inequality constraints

ID:7295117

大小:1.46 MB

页数:39页

时间:2018-02-10

the maximum principle mixed inequality constraints_第1页
the maximum principle mixed inequality constraints_第2页
the maximum principle mixed inequality constraints_第3页
the maximum principle mixed inequality constraints_第4页
the maximum principle mixed inequality constraints_第5页
资源描述:

《the maximum principle mixed inequality constraints》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter3TheMsLximumPrinciple:MixedInequalityConstraintsTheproblemstowhichthemaximumprinciplederivedinthepreviouschapterwasapphcablehadconstraintsinvolvingonlythecontrolvari•ables.Weshallseethatinmanyappliedmodelsitisnecessarytoimposeconstraintsinvolvingbothcontrolandstatevariables.I

2、nequalitycon•straintsinvolvingcontrolandpossiblystatevariablesarecalledmixedinequalityconstraints,Inthesolutionspacesofproblemswithmixedconstraints,theremayberegionsinwhichoneormoreoftheconstraintsistight.Whenthishappens,thesystemmustbecontrolledinsuchawaythatthetightconstraintsaren

3、otviolated.Asaresult,themaximumprincipleofChapter2mustberevisedsothattheHamiltonianismaximizedsubjecttotheconstraints.ThisisdonebyappendingtheHamiltonianwiththemixedconstraintsandtheassociatedLagrangemultipMerstoformaLagrangian,andthensettingthederivativesoftheresultingLagrangianwit

4、hrespecttothecontrolvariablestozero.InSection3.1,aLagrangianformofthemaximumprincipleisdis•cussedformodelsinwhichtherearesomeconstraintswhichinvolveonlycontrolvariables,andotherswhichinvolvebothstateandcontrolvari•ablessimultaneously.Problemshavingpiirestatevariableconstraints,i.e.,

5、thoseinvolvingstatevariablesbutnocontrolvariables,wiUbedealtwithinChapter4.InSection3.2,westateconditionsimderwhichtheLagrangianmax-583.TheMaximumPrinciple:MixedInequalityConstraintsimumprincipleisalsosufficientforoptimality.Economistsfrequentlyanalyzecontrolmodelshavinganinfiniteho

6、ri•zontogetherwithacontinuousdiscountrate.BycombiningthediscountfactorwiththeadjointvariablesandtheLagrangemultipliersandmak•ingsuitablechangesinthedefinitionsoftheHamiltonianandLagrangianfunctions,itispossibletoderivethecurrent-valueformulationofthemaximumprincipleasdescribedinSect

7、ion3.3.TerminalconditionsforeachoftheabovemodelsarediscussedinSection3.4,andthemodelswithinfinitehorizonsandtheirstationaryequilibriumsolutionsarecoveredinSection3.5.Section3.6presentsaclassificationofanumberofthemostimportantandcommonlyusedkindsofoptimalcontrolmodels,togetherwithab

8、riefdescriptionofth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。