腐蚀膨胀算法详细解释

腐蚀膨胀算法详细解释

ID:7278086

大小:242.50 KB

页数:8页

时间:2018-02-10

腐蚀膨胀算法详细解释_第1页
腐蚀膨胀算法详细解释_第2页
腐蚀膨胀算法详细解释_第3页
腐蚀膨胀算法详细解释_第4页
腐蚀膨胀算法详细解释_第5页
资源描述:

《腐蚀膨胀算法详细解释》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、形态学运算中腐蚀,膨胀,开运算和闭运算(针对二值图而言)6.1腐蚀腐蚀是一种消除边界点,使边界向内部收缩的过程。可以用来消除小且无意义的物体。腐蚀的算法:用3x3的结构元素,扫描图像的每一个像素用结构元素与其覆盖的二值图像做“与”操作如果都为1,结果图像的该像素为1。否则为0。结果:使二值图像减小一圈把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a

2、BaX}=XB,如图6.8所示。图6.8    腐蚀的示意图图6.8中X是被处理的对象,B是结构元素。

3、不难知道,对于任意一个在阴影部分的点a,Ba包含于X,所以X被B腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被Bv腐蚀的结果是一样的。如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被Bv腐蚀的结果不同。图6.9    结构元素非对称时,腐蚀的结果不同图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B

4、,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。图6.10  腐蚀运算图6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。图6.11   原图图6.12  腐蚀后的结果图下面的这段程序,实现了上述的腐蚀运算,针对的都是黑色点。参数中有一个BOOL变量,为真时,表示在水平方向进行腐蚀运算,即结构

5、元素B为;否则在垂直方向上进行腐蚀运算,即结构元素B为。6.2膨胀膨胀是将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程。可以用来填补物体中的空洞。膨胀的算法:用3x3的结构元素,扫描图像的每一个像素用结构元素与其覆盖的二值图像做“或”操作如果都为0,结果图像的该像素为0。否则为1结果:使二值图像扩大一圈膨胀(dilation)可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做X被B膨胀的结果。用公式表示为:D(X)={a

6、Ba↑X}=XB,如图6.13所示。图6.1

7、3中X是被处理的对象,B是结构元素,不难知道,对于任意一个在阴影部分的点a,Ba击中X,所以X被B膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。同样,如果B不是对称的,X被B膨胀的结果和X被Bv膨胀的结果不同。让我们来看看实际上是怎样进行膨胀运算的。在图6.14中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B。膨胀的方法是,拿B的中心点和X上的点及X周围的点一个一个地对,如果B上有一个点落在X的范围内,则该点就为黑;右边是膨胀后的结果。可以看出,它包括X的所有范围,就象X膨胀了一圈似的

8、。图6.13  膨胀的示意图图6.14  膨胀运算图6.15为图6.11膨胀后的结果图,能够很明显的看出膨胀的效果。图6.15  图6.11膨胀后的结果图下面的这段程序,实现了上述的膨胀运算,针对的都是黑色点。参数中有一个BOOL变量,为真时,表示在水平方向进行膨胀运算,即结构元素B为;否则在垂直方向上进行膨胀运算,即结构元素B为。6.3开运算先腐蚀后膨胀的过程称为开运算。用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积。先腐蚀后膨胀称为开(open),即OPEN(X)=D(E(X))。让我们来看一个开运算的例子(见图6.16):图6

9、.16开运算在图16上面的两幅图中,左边是被处理的图象X(二值图象,我们针对的是黑点),右边是结构元素B,下面的两幅图中左边是腐蚀后的结果;右边是在此基础上膨胀的结果。可以看到,原图经过开运算后,一些孤立的小点被去掉了。一般来说,开运算能够去除孤立的小点,毛刺和小桥(即连通两块区域的小点),而总的位置和形状不变。这就是开运算的作用。要注意的是,如果B是非对称的,进行开运算时要用B的对称集Bv膨胀,否则,开运算的结果和原图相比要发生平移。图6.17和图6.18能够说明这个问题。图6.17用B膨胀后,结果向左平移了图6.18  用Bv膨胀后位置不变图6.17是用B膨胀

10、的,可以看

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。