尺规作图不能问题就是不可能用尺规作图完成的作图问题

尺规作图不能问题就是不可能用尺规作图完成的作图问题

ID:6592519

大小:51.50 KB

页数:1页

时间:2018-01-19

尺规作图不能问题就是不可能用尺规作图完成的作图问题_第1页
资源描述:

《尺规作图不能问题就是不可能用尺规作图完成的作图问题》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、尺规作图不能问题就是不可能用尺规作图完成的作图问题。其中最著名的是被称为几何三大问题的古典难题:三等分角问题:三等分一个任意角;倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。以上三个问题在2400年前的古希腊已提出这些问题,但在欧几里得几何学的限制下,以上三个问题都不可能解决的。直至1837年,法国数学家万芝尔才首先证明“三等分角”和“倍立方”为尺规作图不能问题。而后在1882年德国数学家林德曼证明π是超越数后,“化圆为方”也被证明为尺规作图不能问题。还有另外两个著名问题:正多边形作法:只

2、使用直尺和圆规,作正五边形。只使用直尺和圆规,作正六边形。只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的。只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的。问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正奇数边多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题。四等分圆周:只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的

3、,向全法国数学家的挑战。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。