欢迎来到天天文库
浏览记录
ID:62182865
大小:1.44 MB
页数:73页
时间:2021-04-20
《最新英汉双语材料力学11ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、英汉双语材料力学11材料力学第十一章能量方法2CHAPTER11ENERGYMETHOD§11–1GENERALEXPRESSIONSOFTHESTRAINENERGY§11–2MOHR’STHEOREM(METHODOFUNITFORCE)§11–3CATIGLIANO’STHEOREM32.Calculationofthestrainenergyofrodsintorsion:3.Calculationofstrainenergyofrodsinbending:ENERGYMETHODorDensityo
2、fthestrainenergy:orDensityofthestrainenergy:72.扭转杆的变形能计算:3.弯曲杆的变形能计算:能量方法83、Generalexpressionsofthestrainenergy:Strainenergyisindependentoftheorderofloading.Deformationsduetomutuallyindependentloadmaybesummedupeachother.Forslendercolumns,thestrainenergyduet
3、oshearingforcesmaybeneglected.ENERGYMETHODDeflectionfactorofshear9三、变形能的普遍表达式:变形能与加载次序无关;相互独立的力(矢)引起的变形能可以相互叠加。细长杆,剪力引起的变形能可忽略不计。能量方法10Solution:Inenergymethod(workdonebyexternalforcesisequaltothestrainenergy)①DetermineinternalforcesAENERGYMETHODBendingmomen
4、t:Torque:Example1Asemicirclerodasshowninthefigureislieinhorizontalplane.AverticalforcePactatitspointA.DeterminethedisplacementofpointAinverticaldirection.PROQMNMTAAPNBjTO11MN[例1]图示半圆形等截面曲杆位于水平面内,在A点受铅垂力P的作用,求A点的垂直位移。解:用能量法(外力功等于应变能)①求内力能量方法APROQMTAAPNBjTO12
5、③Workdonebyexternalforcesisequaltothestrainenergy②Strainenergy:ENERGYMETHODLetthen13③外力功等于应变能②变形能:能量方法14Example2DeterminethedeflectionofpointCbytheenergymethod,wherethebeamisofequalsectionandstraight.Solution:Workdonebyexternalforcesisequaltothestrainenergy
6、Byusingsymmetryweget:Thinking:Forthedistributedload,canwedeterminethedisplacementofpointCbythismethod?qCaaAPBfENERGYMETHODLet15[例2]用能量法求C点的挠度。梁为等截面直梁。解:外力功等于应变能应用对称性,得:思考:分布荷载时,可否用此法求C点位移?能量方法qCaaAPBf16§11–2MOHR’STHEOREM(METHODOFUNITFORCE)Determinethedispla
7、cementfAofanarbitrarypointA.1、Provementofthetheorem:aAFigfAq(x)FigcA0P=1q(x)fAFigbA=1P0ENERGYMETHOD17§11–2莫尔定理(单位力法)求任意点A的位移fA。一、定理的证明:能量方法aA图fAq(x)图cA0P=1q(x)fA图bA=1P018Mohr’stheorem(methodofunitforce)2、GeneralformofMohr’stheoremENERGYMETHOD19莫尔定理(单位力法)二、普
8、遍形式的莫尔定理能量方法203、WhatwemustpayattentiontoasweapplyMohr’stheorem:④CoordinateofM0(x)mustbecoincidewiththatofM(x).Foreachsegmentthecoordinatemaybesetupfreely.⑤Mohr’sintegrationmustbethroughthewholestructur
此文档下载收益归作者所有