专题5:解析几何问题的题型与方法.doc

专题5:解析几何问题的题型与方法.doc

ID:62057602

大小:2.16 MB

页数:28页

时间:2021-04-16

专题5:解析几何问题的题型与方法.doc_第1页
专题5:解析几何问题的题型与方法.doc_第2页
专题5:解析几何问题的题型与方法.doc_第3页
专题5:解析几何问题的题型与方法.doc_第4页
专题5:解析几何问题的题型与方法.doc_第5页
资源描述:

《专题5:解析几何问题的题型与方法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、个人收集整理勿做商业用途专题五解析几何问题的题型与方法【考点审视】高考解析几何试题一般共有4题(2个选择题,1个填空题,1个解答题),共计30分左右,考查的知识点约为20个左右。其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识.解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。(一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并

2、能根据条件熟练地求出直线方程。2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。3.了解二元一次不等式表示平面区域。4.了解线性规划的意义,并会简单的应用。5.了解解析几何的基本思想,了解坐标法。6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.(二)圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质。2.掌握双曲线的定义、标准方程和双曲线的简单几何性质。3.掌握抛物线的定义、标准方程和抛物线的简单几何性质。4.了解圆锥曲线的初步应用.【教学过程】一.基础知识详析(一)直线的方

3、程1.点斜式:;2。截距式:;3.两点式:;4。截距式:;5.一般式:,其中A、B不同时为0。(二)两条直线的位置关系两条直线,有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点)。在这三种位置关系中,我们重点研究平行与相交.设直线:=+,直线:=+,则∥的充要条件是=,且=;⊥的充要条件是=-1。(三)线性规划问题1.线性规划问题涉及如下概念:⑴存在一定的限制条件,这些约束条件如果由x、y的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件。⑵都有一个目标要求,就是要求依赖于x、y的某个函数(称为目标函数)达到最大值或最小值.

4、特殊地,若此函数是x、y的一次解析式,就称为线性目标函数。⑶求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题。⑷满足线性约束条件的解(x,y)叫做可行解.⑸所有可行解组成的集合,叫做可行域。⑹使目标函数取得最大值或最小值的可行解,叫做这个问题的最优解.2.线性规划问题有以下基本定理:⑴一个线性规划问题,若有可行解,则可行域一定是一个凸多边形.⑵凸多边形的顶点个数是有限的.个人收集整理勿做商业用途⑶对于不是求最优整数解的线性规划问题,最优解一定在凸多边形的顶点中找到。3.线性规划问题一般用图解法。(四)圆的有关问题1.圆的标准方程(r>0),称为圆的

5、标准方程,其圆心坐标为(a,b),半径为r.特别地,当圆心在原点(0,0),半径为r时,圆的方程为.2.圆的一般方程(>0)称为圆的一般方程,其圆心坐标为(,),半径为.当=0时,方程表示一个点(,);当<0时,方程不表示任何图形。3.圆的参数方程圆的普通方程与参数方程之间有如下关系:(θ为参数)(θ为参数)说明:直线的斜率及直线方程的几种形式是本章的重点,本章的难点是倾斜角及直线方程的概念,突破难点的方法之一是运用数形结合,要注意直线方程几种形式的适用性和局限性,直线方程中的各个参数都具有明显的几何意义,它对直线的位置、点与直线、直线与直线、直线与圆的各种关系的研究十

6、分重要,高考中重点考查运用上述知识解题的变通能力。在解答有关直线的问题时,要注意:(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次是倾斜角的范围;(2)在利用直线的截距式解题时,要注意防止由于“零截距”而造成丢解的情况;(3)在利用直线的点斜式、斜截式解题时,要注意检验不存在的情况,防止丢解;(4)直线方程的三种形式各有适用范围,要能根据题中所给已知条件选用最恰当的表示形式,并能根据问题的需要灵活准确地进行互化,在求直线方程时,要注意需二个独立的条件才能确定。常用的方法是待定系数法;(5)两直线的平行与垂直是现实生活中最常见到的两种特殊位置关系,故掌握它

7、们的判断方法就显得非常重要,特别要提醒的是应把它们的判定和平面两向量共线与垂直的判定有机地结合在一起;(6)在由两直线的位置关系确定有关参数的值或其范围时,要充分利用分类讨论、数形结合、特殊值检验等基本的数学思想方法。(7)直线方程问题是“解析几何”的基础,学习时应注意积累下面两方面的经验:①正确选择各种直线方程解决各种问题;②通过直线方程问题的解题,逐步认识“解析几何”问题的解题思维策略,积累“方程”、“坐标”、“图形”的解题经验。个人收集整理勿做商业用途线性规划是直线方程在解决实际问题中的应用,常通过二元一次不等式表示的平面区域来确定

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。