欢迎来到天天文库
浏览记录
ID:61907126
大小:213.50 KB
页数:6页
时间:2021-03-27
《2020_2021学年新教材高中数学第8章立体几何初步8.4.1平面课时分层作业含解析新人教A版必修第二册.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时分层作业(二十六) 平面(建议用时:40分钟)一、选择题1.已知点A,直线a,平面α,以下命题表述正确的个数是( )①A∈a,a⊄α⇒A∉α;②A∈a,a∈α⇒A∈α;③A∉a,a⊂α⇒A∉α;④A∈a,a⊂α⇒A⊂α.A.0B.1 C.2 D.3A[①不正确,如a∩α=A;②不正确,∵“a∈α”表述错误;③不正确,如图所示,A∉a,a⊂α,但A∈α;④不正确,“A⊂α”表述错误.]2.(多选题)下列命题中正确的是( )A.三角形是平面图形B.四边形是平面图形C.四边相等的四边形是平面图形D.圆是
2、平面图形AD[根据,基本事实1可知AD正确,BC错误.故选AD.]3.两个平面若有三个公共点,则这两个平面( )A.相交B.重合C.相交或重合D.以上都不对C[若三点在同一条直线上,则这两个平面相交或重合,若三点不共线,则这两个平面重合.]4.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行B[两条平行直线、两条相交直线、直线及直线外一点都分别确定一个平面,选B.]5.三条两
3、两平行的直线可以确定平面的个数为( )A.0B.1C.0或1D.1或3D[当三条直线是同一平面内的平行直线时,确定一个平面,当三条直线是三棱柱侧棱所在的直线时,确定三个平面,选D.]二、填空题6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.∈[因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.]7.如图,在长方体ABCDA1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有________条.5[由题图可知,既与AB共面又与C
4、C1共面的棱有CD、BC、BB1、AA1、C1D1共5条.]8.已知平面α与平面β、平面γ都相交,则这三个平面的交线可能有________条.1或2或3[当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线;当β与γ平行时,有2条交线.]三、解答题9.已知:A∈l,B∈l,C∈l,D∉l,如图所示.求证:直线AD,BD,CD共面.[证明] 因为D∉l,所以l与D可以确定平面α,因为A∈l,所以A∈α,又D∈α,所以AD⊂α.同理,BD⊂α,CD⊂α,所以AD,BD,CD在同一平面α
5、内,即它们共面.10.求证:三棱台A1B1C1ABC三条侧棱延长后相交于一点.[证明] 如图,延长AA1,BB1,设AA1∩BB1=P,又BB1⊂平面BC1,∴P∈平面BC1,AA1⊂平面AC1,∴P∈平面AC1,∴P为平面BC1和平面AC1的公共点,又∵平面BC1∩平面AC1=CC1,∴P∈CC1,即AA1,BB1,CC1延长后交于一点P.11.如图,α∩β=l,A∈α,C∈β,C∉l,直线AD∩l=D,过A、B、C三点确定的平面为γ,则平面γ、β的交线必过( )A.点A B.点BC.点C,但不过
6、点DD.点C和点DD[A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.]12.(多选题)如图,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线B.A,M,O,A1四点共面C.A,O,C,M四点共面D.B,B1,O,M四点共面ABC[因为A,M,O三点既在平面AB1D1内,又在平面AA1C内,故A,M,O三点共线,从而易知ABC均正确.]13.三个互不重合的平面把空
7、间分成n部分,则n所有可能的值为________.4,6,7或8[若三个平面互相平行,则可将空间分为4部分;若三个平面有两个平行,第三个平面与其他两个平面相交,则可将空间分成6部分;若三个平面交于一线,则可将空间分成6部分;若三个平面两两相交且三条交线平行,则可将空间分成7部分;若三个平面两两相交且三条交线交于一点(如墙角三个墙面的关系),则可将空间分成8部分.故n的所有可能值为4,6,7或8.]14.如图,已知在四面体ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且==2.求证:直
8、线EG,FH,AC相交于同一点.[证明]∵E,F分别是AB,AD的中点,∴EF∥BD,且EF=BD.又==2,∴GH∥BD,且GH=BD,∴EF∥GH,且EF>GH,∴四边形EFHG是梯形,其两腰所在直线必相交.设两腰EG,FH的延长线相交于一点P,∵EG⊂平面ABC,FH⊂平面ACD,∴P∈平面ABC,P∈平面ACD.又平面ABC∩平面ACD=AC,∴P∈AC,故直线EG,FH,AC相交于同一点.
此文档下载收益归作者所有