Web数据挖掘在信息管理的运用.doc

Web数据挖掘在信息管理的运用.doc

ID:61773073

大小:28.50 KB

页数:4页

时间:2021-03-20

Web数据挖掘在信息管理的运用.doc_第1页
Web数据挖掘在信息管理的运用.doc_第2页
Web数据挖掘在信息管理的运用.doc_第3页
Web数据挖掘在信息管理的运用.doc_第4页
资源描述:

《Web数据挖掘在信息管理的运用.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、Web数据挖掘在信息管理的运用1信息管理的现状和发展趋势信息管理是国家经济建设、人才培养以及学科发展的必要途径,科研创新、高校图书馆、企业管理、电子商务等多领域离不开信息管理。如何从广大的数据信息中,快速检索出需要的信息,需要Web数据挖掘技术。为做到高效率高精度的提供教学、科研、企业等的个性化需要,快速检索海量信息资料,其算法及在信息管理中的应用是一个值得研究的课题。Web数据挖掘技术是信息管理这一课题的前沿技术,综合多种信息手段,大大提升了信息资源的组织管理的优势,强化科技信息服务质量,拓展了更广泛的服务方式和

2、应用方式。信息管理不仅仅是信息的载体管理,同时针对信息内容的外在特征深化管理也是信息管理的重要组成部分。对原信息内容加以深入分析,整体提供海量数据的内在联系和规则,消化、辨识消息,保证消息安全,有效运用数据挖掘技术等尖端计算机技术,提高整体信息管理水平是信息管理的要求。2数据挖掘技术的基本概念和特质4学海无涯数据挖掘技术是综合统计学、计算机技术数据库等研究内容,吸收人工知识和机器学习的专业知识,进行知识获取和数据挖掘的一门学科,能够快速准确、方便快捷的获取有价值的信息。目前数据挖掘技术仍是信息管理研究的热点,代表性

3、的数据挖掘系统有Enterpriseminer,IntelligentMiner等。通过模型化、归纳、聚类、偏差等技术重点进行数据挖掘,其技术难点是要实时的综合数据库进行智能化的数据挖掘。近年来随着数据库技术的发展,基于异构数据源等多种技术不断发展,移动计算的数据挖掘技术的研究也日益深入。值得一提的是,关联规则代表算法是Apriori,该算法通过识别频繁项目集,发现数据库中各项目的关联关系,即发现可信度强的规则。在这一算法的基础上,为了不断提高技术效率,采用增量更新技术,进行并行化挖掘数据。在上述算法的基础上,强调

4、形象规则,即有关客户兴趣度等外在信息,快速学习相似性行为模式索引技术,通过在线多维索引,强调结构化有向的构建等是数据挖掘技术的研究热点。随着复杂数据不断海量化,研究将优化智能算法结合目前数据挖掘技术,从而大幅度提高数据处理效率和质量。信息管理数据复杂海量,有着多种信息类型,用户检索的自由度很高,用户个性化需求多样,Web数据挖掘技术应运而生。具体技术包括文件内容描述、人为链接结构和存取模式用法的挖掘。Web数据挖掘技术是利用进化算法、粗集等信息处理方法,使用检索工具检索形成信息文本集、选取合适的典型特征,分析、修剪

5、、归纳异质信息,精简子集。检索功能的逼近能力反映了该技术的检索质量。基于内容的文本挖掘方法如Webwatcher,Musag,Letizia等。通过关键字定位,或是使用近义词典扩充关键字,或者基于浏览行为而无需关键字,形成客户形象信息、兴趣模型,对客户提供评价和链接以及相似信息获取,更新搜索方式,并反馈客户申请。目前技术运用效果佳,实现更柔性精确的信息管理是该技术前进的方向。利用基于问题的技术代表有Antagonomy,In-ternetFish等,是一定约束的自然语言的界面通过存取分布交互系统,学习器学习客户喜好

6、情况,以及少许特征向量,对信息快速分类,在数据库基础上,使用自组织映射等技术,集成人工智能,最终成为个性化搜索助理的信息管理技术。上述技术一般适用于特定用户,协同即公众学习方法是分析一组客户中客户间相似程度关联规则,而非分析信息内容。优点在于可以平等处理各种内容信息,但少数用户的评价级不足,会影响信息管理系统性能。强调客户间的信息交流,传送响应信息,依据信息选择学习算子,大大的提高了信息管理效率和质量。在强调机器学习和统计方法的基础上,体现了分布协同处理的信息管理新思路,有着柔性智能的特点,在信息管理中应用前景广大

7、。3数据挖掘在信息管理中的具体应用4学海无涯以科技信息平台中的数据挖掘为例。数据可分为结构化数据、半结构以及非结构化数据,如表一所示。表一数据分类如今非结构化、个性化、随机数据、海量数据的检索需求日渐提高,促进了科技信息检索平台及相图一科技文献信息平台应软件的研发,这一课题是当前热点。Web数据挖掘技术共享信息获取检索管理的模式改革,强调了科技信息平台系统智能化,通过分析功能的添加,增强用户管理,提供个性化的解决方案,利用数据存储客户喜好,对客户数据库进行分析,研究知识挖掘的领域,提供多目标的信息管理:改进系统性能

8、、设计、理解用户需求等等。通过统计学方法分析检索量、频率、次数、空间时间分布,路径模式发现算法,在移动通信的支持上,进行进一步的科技文献信息平台的搭建是主要发展趋势。具体平台如图一所示,一方面客户端综合用户间联系、用户历史纪录、分析用户图形,交由数据中心处理。另一方面,各分节点在总节点的指挥下,反馈信息。具体过程有:数据挖掘、任务结构化解析、挖掘算法、智能模

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。