欢迎来到天天文库
浏览记录
ID:59928597
大小:408.00 KB
页数:14页
时间:2020-11-28
《选修4-4椭圆的参数方程复习进程.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、选修4-4椭圆的参数方程OAMxyNB解:设∠XOA=φ,则A:(acosφ,asinφ),B:(bcosφ,bsinφ),由此:即为点M轨迹的参数方程.消去参数得:即为点M轨迹的普通方程.如下图,以原点O为圆心,分别以a,b(a>b>0)为半径作两个同心圆,设A为大圆上的任意一点,连接OA,与小圆交于点B,过点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋转时点M的轨迹参数方程.1.参数方程是椭圆的参数方程.2.在椭圆的参数方程中,常数a、b分别是椭圆的长半轴长和短半轴长.a>b另外称为离心角,规
2、定参数的取值范围是φOAMxyNB归纳比较椭圆的标准方程:椭圆的参数方程中参数φ的几何意义:xyO圆的标准方程:圆的参数方程:x2+y2=r2θ的几何意义是∠AOP=θ,是旋转角PAθ椭圆的参数方程:是∠AOX=φ,不是∠MOX=φ.称离心角【练习1】把下列普通方程化为参数方程.(1)(2)(3)(4)把下列参数方程化为普通方程练习2:已知椭圆的参数方程为(是参数),则此椭圆的长轴长为(),短轴长为(),焦点坐标是(),离心率是()。42(,0)例1、如图,在椭圆x2/9+y2/4=1上求一点M,使M到直线l:x+2y-10=0
3、的距离最小.xyOP分析1平移直线l至首次与椭圆相切,切点即为所求.小结:借助椭圆的参数方程,可以将椭圆上的任意一点的坐标用三角函数表示,利用三角知识加以解决.例1、如图,在椭圆x2/9+y2/4=1上求一点M,使M到直线l:x+2y-10=0的距离最小.分析2例2.已知椭圆,求椭圆内接矩形面积的最大值.解:设椭圆内接矩形的一个顶点坐标为所以椭圆内接矩形面积的最大值为2ab.例3:已知A,B两点是椭圆与坐标轴正半轴的两个交点,在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大.练习1、动点P(x,y)在曲线上变化,求2x+
4、3y的最大值和最小值2、θ取一切实数时,连接A(4sinθ,6cosθ)和B(-4cosθ,6sinθ)两点的线段的中点轨迹是.A.圆B.椭圆C.直线D.线段B设中点M(x,y)x=2sinθ-2cosθy=3cosθ+3sinθ它的焦距是多少?B练习小结(1)椭圆的参数方程(a>b>0)注意:椭圆参数与圆的参数方程中参数的几何意义不同.(2)椭圆与直线相交问题此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢
此文档下载收益归作者所有