浙江省杭州二中2012-2013学年高二上学期期中数学文试题.doc

浙江省杭州二中2012-2013学年高二上学期期中数学文试题.doc

ID:58846710

大小:467.00 KB

页数:9页

时间:2020-09-23

浙江省杭州二中2012-2013学年高二上学期期中数学文试题.doc_第1页
浙江省杭州二中2012-2013学年高二上学期期中数学文试题.doc_第2页
浙江省杭州二中2012-2013学年高二上学期期中数学文试题.doc_第3页
浙江省杭州二中2012-2013学年高二上学期期中数学文试题.doc_第4页
浙江省杭州二中2012-2013学年高二上学期期中数学文试题.doc_第5页
资源描述:

《浙江省杭州二中2012-2013学年高二上学期期中数学文试题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、杭州二中2012学年第一学期高二年级期中考试数学试卷(文科)参考公式:球的表面积公式柱体的体积公式球的体积公式其中表示柱体的底面积,表示柱体的高台体的体积公式其中R表示球的半径锥体的体积公式其中S1、S2分别表示台体的上、下底面积h表示台体的高其中表示锥体的底面积,表示锥体的高.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四项中,只有一项是符合题目要求的.1.直线的斜率为A.B.C.D.2.直线与圆的位置关系是 A.相切B.相离C.相交D.不能确定3.设,若直线与线段AB没有公共点,则的取值范围是A.B.C.D.4.若实数满足不等式组,则的

2、最小值是A.12B.13C.14D.255.两条异面直线在同一平面的射影不可能的是A.同一直线B.两条平行线C.两条相交直线D.一点和一条直线6.已知是两条不同的直线,是两个不同的平面,给出下列四个命题:①则;②若则;③若则;④若,则.其中正确的命题的序号是A.①③B.②③C.①④D.②④7.如图,在四棱锥中,平面,,,,则异面直线与所成角的余弦值为A.B.C.D.8.直线关于直线对称的直线的方程为A.B.C.D.9.直线与圆相交于,两点,若,则的取值范围是A.B.C.D.10.与原点及点的距离都是1的直线共有A.4条B.3条C.2条D.1条二、填空题:本大题有

3、7小题,每小题4分,共28分.请将答案填写在答题卷中的横线上.11.已知直线经过点,且与直线平行,则直线的一般式方程是.12.若直线过圆的圆心,则a的值为.13.在正方体-中,直线与平面所成角的大小为.14.如图,已知可行域为及其内部,若目标函数当且仅当在点A处取得最大值,则k的取值范围是.15.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3.16.球面上有四个点P、A、B、C,若PA,PB,PC两两互相垂直,且PA=PB=PC=1,则该球的表面积是.17.已知实数满足,则的最小值为.杭州二中2012学年第一学期高二年级期中考试数学(文)答题

4、卷一、选择题:本大题共10小题,每小题3分,共30分.题号12345678910答案二、填空题:本大题共7小题,每小题4分,共28分.把答案填在答卷中的横线上.11.12.13.14.15.16.17.三、解答题:本大题有4小题,共42分.解答应写出文字说明,证明过程或演算步骤.18.(本小题8分)求过直线与圆的交点A、B,且面积最小的圆的方程.19.(本小题10分)已知直线和在轴上的截距相等,且它们的倾斜角互补,又直线过点.如果点到的距离为1,求的方程.20.(本小题12分)在如图所示的四棱锥中,已知PA⊥平面ABCD,,,,为的中点.(Ⅰ)求证:MC∥平面P

5、AD;(Ⅱ)求证:平面PAC⊥平面PBC;(Ⅲ)求直线MC与平面PAC所成角的余弦值.21.(本小题12分)设圆的切线与两坐标轴交于点.B(0,b)xOyA(a,0)(Ⅰ)证明:;(II)求线段AB中点M的轨迹方程;(Ⅲ)若求△AOB的面积的最小值.杭州二中2012学年第一学期高二年级期中考试数学(文科)参考答案一、选择题:本大题共10小题,每小题3分,共30分.题号12345678910答案ABDCACBADA二、填空题:本大题共7小题,每小题4分,共28分.11.12.113.14.15.1616.3π17.三、解答题:本大题有4小题,共42分.解答应写出文

6、字说明,证明过程或演算步骤.18.(本小题8分)解:联立方程组,把(1)代入(2),得,故,则所求圆的直径为.圆心为AB中点,所以,所求面积最小的圆的方程是另解:设过已知直线与圆的交点的圆系方程为(1)其圆心的坐标为,把它代入直线(2)得(3)把(3)代入(1),则所求面积最小的圆的方程是.19.(本小题10分)解:直线的方程为,则直线的方程为则(1)又因为,则(2)由(2)得,代入(1),得.解得,或.则当时,;当时,.所以直线或20.(本小题12分)解:(Ⅰ)如图,取PA的中点E,连接ME,DE,∵M为PB的中点,∴EM//AB,且EM=AB.又∵,且,∴E

7、M//DC,且EM=DC∴四边形DCME为平行四边形,则MC∥DE,又平面PAD,平面PAD所以MC∥平面PAD(Ⅱ)∵PA⊥平面ABCD,∴PA⊥BC,又,∴BC⊥平面PAC,又平面PBC,所以,平面PAC⊥平面PBC;(Ⅲ)取PC中点N,则MN∥BC由(Ⅱ)知BC⊥平面PAC,则MN⊥平面PAC所以,为直线MC与平面PAC所成角,,21.(本小题12分)解:(Ⅰ)直线的方程为,即.则圆心(2,2)到切线的距离,即,.(II)设AB的中点为M(x,y),则,代入,得线段AB中点M的轨迹方程为.(Ⅲ)由又(当且仅当时取等号),所以,△AOB面积的最小值是.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。