新北师大版八年级下册数学 《因式分解》复习教案.doc

新北师大版八年级下册数学 《因式分解》复习教案.doc

ID:58804263

大小:147.50 KB

页数:7页

时间:2020-09-27

新北师大版八年级下册数学 《因式分解》复习教案.doc_第1页
新北师大版八年级下册数学 《因式分解》复习教案.doc_第2页
新北师大版八年级下册数学 《因式分解》复习教案.doc_第3页
新北师大版八年级下册数学 《因式分解》复习教案.doc_第4页
新北师大版八年级下册数学 《因式分解》复习教案.doc_第5页
资源描述:

《新北师大版八年级下册数学 《因式分解》复习教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四章因式分解●教学目标(一)教学知识点1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.2.熟悉本章的知识结构图.(二)能力训练要求通过知识结构图的教学,培养学生归纳总结能力,在例题的教学过程中培养学生分析问题和解决问题的能力.(三)情感与价值观要求通过因式分解综合练习,提高学生观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.●教学重点复习综合应用提公因式法,运用公式法分解因式.●教学难点利用分解因式进行计算及讨论.●教学方法引导学生自觉进行归纳总结.●教学过程Ⅰ.创设问题情境,

2、引入新课[师]前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.今天,我们来综合总结一下.Ⅱ.新课讲解(一)讨论推导本章知识结构图[师]请大家先回忆一下我们这一章所学的内容有哪些?[生](1)有因式分解的意义,提公因式法和运用公式法的概念.(2)分解因式与整式乘法的关系.(3)分解因式的方法.[师]很好.请大家互相讨论,能否把本章的知识结构图绘出来呢?(若学生有困难,教师可给予帮助)[生](二)重点知识讲解[师]下面请大家把重点知识回顾一下.1.举例说明什么是分解因式.[生]如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2)把多项

3、式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式.[师]学习因式分解的概念应注意以下几点:(1)因式分解是一种恒等变形,即变形前后的两式恒等.(2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止.2.分解因式与整式乘法有什么关系?[生]分解因式与整式乘法是两种方向相反的变形.如:ma+mb+mc=m(a+b+c)从左到右是因式分解,从右到左是整式乘法.3.分解因式常用的方法有哪些?[生]提公因式法和运用公式法.可以分别用式子表示为:ma+mb+mc=m(a+b+c)a2-b2=(a+

4、b)(a-b)a2±2ab+b2=(a±b)24.例题讲解投影片(§4.6A)[例1]下列各式的变形中,哪些是因式分解?哪些不是?说明理由.(1)x2+3x+4=(x+2)(x+1)+2(2)6x2y3=3xy·2xy2(3)(3x-2)(2x+1)=6x2-x-2(4)4ab+2ac=2a(2b+c)[师]分析:解答本题的依据是因式分解的定义,即把一个多项式化成几个整式的积的形式是因式分解,否则不是.[生]解:(1)不是因式分解,因为右边的运算中还有加法.(2)不是因式分解,因为6x2y3不是多项式而是单项式,其本身就是积的形式,所以不需要再因式分解.(3)不是因式分解,而是整式乘法.(4

5、)是因式分解.投影片(§4.6B)[例2]将下列各式分解因式.(1)8a4b3-4a3b4+2a2b5;(2)-9ab+18a2b2-27a3b3;(3)-x2;(4)9(x+y)2-4(x-y)2;(5)x4-25x2y2;(6)4x2-20xy+25y2;(7)(a+b)2+10c(a+b)+25c2.解:(1)8a4b3-4a3b4+2a2b5=2a2b3(4a2-2ab+b2);(2)-9ab+18a2b2-27a3b3=-(9ab-18a2b2+27a3b3)=-9ab(1-2ab+3a2b2);(3)-x2=()2-(x)2=(+x)(-x);(4)9(x+y)2-4(x-y)2

6、=[3(x+y)]2-[2(x-y)]2=[3(x+y)+2(x-y)][3(x+y)-2(x-y)]=(3x+3y+2x-2y)(3x+3y-2x+2y)=(5x+y)(x+5y);(5)x4-25x2y2=x2(x2-25y2)=x2(x+5y)(x-5y);(6)4x2-20xy+25y2=(2x)2-2·2x·5y+(5y)2=(2x-5y)2;(7)(a+b)2+10c(a+b)+25c2=(a+b)2+2·(a+b)·5c+(5c)2=[(a+b)+5c]2=(a+b+5c)2投影片(§4.6C)[例3]把下列各式分解因式:(1)x7y3-x3y3;(2)16x4-72x2y2+

7、81y4;解:(1)x7y3-x3y3=x3y3(x4-1)=x3y3(x2+1)(x2-1)=x3y3(x2+1)(x+1)(x-1)(2)16x4-72x2y2+81y4=(4x2)2-2·4x2·9y2+(9y2)2=(4x2-9y2)2=[(2x+3y)(2x-3y)]2=(2x+3y)2(2x-3y)2.[师]从上面的例题中,大家能否总结一下分解因式的步骤呢?[生]可以.分解因式的一般步骤为:(1)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。