欢迎来到天天文库
浏览记录
ID:58744768
大小:1.12 MB
页数:54页
时间:2020-10-03
《清晰空间几何体的表面积与体积ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3.1柱体、椎体、台体的表面积与体积一、柱体、锥体、台体的表面积(1)矩形面积公式:__________。(2)三角形面积公式:_________。正三角形面积公式:_______。(3)圆面积面积公式:_________。(4)圆周长公式:_________。(5)扇形面积公式:__________。(6)梯形面积公式:__________复习回顾柱体锥体台体球几何体的分类多面体旋转体在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的表面积怎样得到的几何体表面积展开图平面图形面积空间问题平面问题把直三
2、棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?正棱锥的侧面展开图是什么?侧面展开正棱锥的侧面积如何计算?表面积如何计算?正棱台的侧面展开图是什么?侧面展开h'h'正棱台的侧面积如何计算?表面积如何计算?棱柱、棱锥、棱台的表面积h'一般地,多面体的表面积就是各个面的面积之和表面积=侧面积+底面积小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式C’=0C’=C例1已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.BCAS例1已知棱长为a,各面均为等边三角形的四面体S-ABC,求它
3、的表面积.DBCAS所以:因此,四面体S-ABC的表面积.交BC于点D.解:先求的面积,过点S作典型例题因为求多面体的表面积可以通过求各个平面多边形的面积和得到,那么旋转体的表面积该如何求呢?思考OOO’OO’OOr’=r上底扩大r’=0上底缩小三者之间关系圆柱、圆锥、圆台三者的表面积公式之间有什么关系?例2如图,一个圆台形花盆盆口直径20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm.那么花盆的表面积约是多少平方厘米(取3.14,结果精确到1)?解:由圆台的表面积公式得花盆的表面积:答:花盆的
4、表面积约是999.典型例题各面面积之和小结:展开图圆台圆柱圆锥空间问题转化成平面问题棱柱、棱锥、棱台圆柱、圆锥、圆台所用的数学思想:柱体、锥体、台体的表面积二、柱体、锥体、台体的体积长方体体积:正方体体积:圆柱的体积:abhaaah底面积高柱体体积以前学过特殊的棱柱——正方体、长方体以及圆柱的体积公式,它们的体积公式可以统一为:柱体体积柱体(棱柱、圆柱)的体积公式:(其中S为底面面积,h为柱体的高)3.1.锥体(棱锥、圆锥)的体积(底面积S,高h)注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面
5、,可以用来求点到面的距离问题:锥体(棱锥、圆锥)的体积椎体(圆锥、棱锥)的体积公式:锥体体积(其中S为底面面积,h为高)h由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是底面面积乘高的.ss/ss/hx四.台体的体积V台体=上下底面积分别是s/,s,高是h,则台体(棱台、圆台)的体积公式台体体积柱体、锥体、台体的体积公式之间有什么关系?S为底面面积,h为柱体高分别为上、下底面面积,h为台体高S为底面面积,h为锥体高上底扩大上底缩小例2如图,一个圆台形花盆盆口直径20cm,盆底直径为1
6、5cm,底部渗水圆孔直径为1.5cm,盆壁长15cm.那么花盆的表面积约是多少平方厘米?例3有一堆规格相同的铁制(铁的密度是)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(取3.14)?解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即:所以螺帽的个数为(个)答:这堆螺帽大约有252个.典型例题RR球的体积:一个半径和高都等于R的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为R的半球的体积相等。探究RR半径为
7、R的球的体积第一步:分割O球面被分割成n个网格,表面积分别为:则球的表面积:则球的体积为:设“小锥体”的体积为:O知识点三、球的表面积和体积(O第二步:求近似和O由第一步得:第三步:转化为球的表面积如果网格分的越细,则:①由①②得:②球的体积:的值就趋向于球的半径RO“小锥体”就越接近小棱锥。半径为R的球的表面积公式设球的半径为R,则球的体积公式为V球=.4∕3πR3例1.(2009年高考上海卷)若球O1、O2表面积之比=4,则它们的半径之比=______.(1)若球的表面积变为原来的2倍,则半径变为原来的—倍。(2)
8、若球半径变为原来的2倍,则表面积变为原来的—倍。(3)若两球表面积之比为1:2,则其体积之比是———。(4)若两球体积之比是1:2,则其表面积之比是———。例2:例3.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。ABCDD1C1B1A1OABCDD1C1B1A1O分析:正方体内接
此文档下载收益归作者所有