第8章方差分析与试验设计-PPT课件.ppt

第8章方差分析与试验设计-PPT课件.ppt

ID:58730315

大小:308.50 KB

页数:46页

时间:2020-10-04

第8章方差分析与试验设计-PPT课件.ppt_第1页
第8章方差分析与试验设计-PPT课件.ppt_第2页
第8章方差分析与试验设计-PPT课件.ppt_第3页
第8章方差分析与试验设计-PPT课件.ppt_第4页
第8章方差分析与试验设计-PPT课件.ppt_第5页
资源描述:

《第8章方差分析与试验设计-PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第7章方差分析与试验设计7.1方差分析引论7.2单因素方差分析7.3方差分析中的多重比较学习目标解释方差分析的概念解释方差分析的基本思想和原理掌握单因素方差分析的方法及应用理解多重比较的意义7.1方差分析引论一、方差分析及其有关术语二、方差分析的基本思想和原理三、方差分析的基本假定四、问题的一般提法方差分析及其有关术语什么是方差分析(ANOVA)?(analysisofvariance)检验多个总体均值是否相等通过分析数据的误差判断各总体均值是否相等研究分类型自变量对数值型因变量的影响一个或多个分类

2、尺度的自变量两个或多个(k个)处理水平或分类有单因素方差分析和双因素方差分析单因素方差分析:涉及一个分类的自变量双因素方差分析:涉及两个分类的自变量什么是方差分析?(例题分析)消费者对四个行业的投诉次数行业观测值零售业旅游业航空公司家电制造业12345675766494034534468392945565131492134404451657758【例】为了对几个行业的服务质量进行评价,消费者协会在四个行业分别抽取了不同的企业作为样本。最近一年中消费者对总共23家企业投诉的次数如下表什么是方差分析?(

3、例题分析)分析四个行业之间的服务质量是否有显著差异,也就是要判断“行业”对“投诉次数”是否有显著影响作出这种判断最终被归结为检验这四个行业被投诉次数的均值是否相等若它们的均值相等,则意味着“行业”对投诉次数是没有影响的,即它们之间的服务质量没有显著差异;若均值不全相等,则意味着“行业”对投诉次数是有影响的,它们之间的服务质量有显著差异方差分析中的有关术语因素或因子(factor)所要检验的对象要分析行业对投诉次数是否有影响,行业是要检验的因素或因子水平或处理(treatment)因子的不同表现零售业

4、、旅游业、航空公司、家电制造业就是因子的水平观察值在每个因素水平下得到的样本数据每个行业被投诉的次数就是观察值方差分析的基本思想和原理方差分析的基本思想和原理(图形分析)零售业旅游业航空公司家电制造从散点图上可以看出不同行业被投诉的次数是有明显差异的同一个行业,不同企业被投诉的次数也明显不同行业与被投诉次数之间有一定的关系方差分析的基本思想和原理(图形分析)3.仅从散点图上观察还不能提供充分的证据证明不同行业被投诉的次数之间有显著差异4.需要有更准确的方法来检验这种差异是否显著,也就是进行方差分析方

5、差分析的基本思想和原理方差分析的基本思想和原理(两类误差)随机误差因素的同一水平(总体)下,样本各观察值之间的差异比如,同一行业下不同企业被投诉次数是不同的这种差异可以看成是随机因素的影响,称为随机误差系统误差因素的不同水平(不同总体)下,各观察值之间的差异比如,不同行业之间的被投诉次数之间的差异这种差异可能是由于抽样的随机性所造成的,也可能是由于行业本身所造成的,后者所形成的误差是由系统性因素造成的,称为系统误差方差分析的基本思想和原理(两类方差)数据的误差用平方和(sumofsquares)表示

6、,称为方差组内方差(withingroups)因素的同一水平(同一个总体)下样本数据的方差组间方差(betweengroups)因素的不同水平(不同总体)下各样本之间的方差方差分析的基本思想和原理(方差的比较)若不同行业对投诉次数没有影响,则组间误差中只包含随机误差,没有系统误差。这时,组间误差与组内误差经过平均后的数值就应该很接近,它们的比值就会接近1若不同行业对投诉次数有影响,在组间误差中除了包含随机误差外,还会包含有系统误差,这时组间误差平均后的数值就会大于组内误差平均后的数值,它们之间的比值

7、就会大于1当这个比值大到某种程度时,就可以说不同水平之间存在着显著差异方差分析的基本假定方差分析的基本假定每个总体都应服从正态分布对于因素的每一个水平,其观察值是来自服从正态分布总体的简单随机样本各个总体的方差必须相同各组观察数据是从具有相同方差的总体中抽取的观察值是独立的方差分析中的基本假定在上述假定条件下,判断行业对投诉次数是否有显著影响,实际上也就是检验具有同方差的四个正态总体的均值是否相等如果四个总体的均值相等,可以期望四个样本的均值也会很接近方差分析中基本假定如果原假设成立,即H0:m1

8、=m2=m3=m4四个行业被投诉次数的均值都相等意味着每个样本都来自均值为、方差为2的同一正态总体Xf(X)1234方差分析中基本假定若备择假设成立,即H1:mi(i=1,2,3,4)不全相等至少有一个总体的均值是不同的四个样本分别来自均值不同的四个正态总体Xf(X)3124问题的一般提法问题的一般提法设因素有k个水平,每个水平的均值分别用1,2,,k表示要检验k个水平(总体)的均值是否相等,需要提出如下假设:H0:1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。