柱、锥、球与简单组合体(2).doc

ID:58690217

大小:653.50 KB

页数:8页

时间:2020-10-08

柱、锥、球与简单组合体(2).doc_第1页
柱、锥、球与简单组合体(2).doc_第2页
柱、锥、球与简单组合体(2).doc_第3页
柱、锥、球与简单组合体(2).doc_第4页
柱、锥、球与简单组合体(2).doc_第5页
资源描述:

《柱、锥、球与简单组合体(2).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Word文档...范文范例...内容齐全9.5柱、锥、球及其简单组合体(二)天长市职教中心王启荣【教学目标】知识目标:了解圆柱、圆锥、球的结构特征及表面积与体积的计算能力目标:(1)能看懂圆柱、圆锥、球的直观图;(2)会计算圆柱、圆锥、球的表面积、体积;(3)培养学生的空间想象能力计算技能和计算工具使用技能.情感目标:(1)参与数学实验,认知圆柱、圆锥、球的模型与直观图,培养数学直觉,感受科学思维.(2)关注生活中的数学模型,体会数学知识的应用.(3)经历合作学习的过程,尝试探究与讨论,树立团队合作意识.【教学重点】圆柱、圆锥、球的结构特征及相关的计算.【教学难点】简单组合体的结构特征及其面积

2、、体积的计算.【教学设计】圆柱、圆锥、球都是旋转体,它们分别由矩形、直角三角形、半圆绕轴旋转而成.这部分内容的教学要结合实物模型或教学课件,讲清形成过程及各种量的关系,抓住旋转过程中的不变量是计算有关问题的关键.圆柱两个底面圆心连线的长度等于圆柱的高.圆锥的顶点与底面圆心的连线的长度等于圆锥的高.例3是有关圆柱计算的题目,例4是求圆锥体积的题目,例5是求球的表面积与体积的题目,根据公式计算时不要出错.要提醒学生注意区别圆柱与圆柱面、圆锥与圆锥面、球与球面等概念.用平面去截球,截面是圆面,并且球心和截面圆心的连线垂直于截面.要注意球的大圆与小圆的区别.球面上两点的球面距离是指经过这两点的大圆在这

3、两点间的一段劣弧的长度.例6、例7专业资料...供学习...参考...下载Word文档...范文范例...内容齐全是有关简单组合体求积的题目,关键是要弄清组合体的结构,然后根据相应公式进行计算.【教学备品】教学课件.【课时安排】5课时【教学过程】教学过程*揭示课题9.5柱、锥、球及其简单组合体(二)【实验】以矩形的一边所在直线为旋转轴旋转,观察其余各边旋转一周所形成的几何体(如图9−63).图9−63*动脑思考探索新知【新知识】以矩形的一边所在直线为旋转轴,其余各边旋转形成的曲面(或平面)所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转形成的圆面叫做圆柱的底面.平行于轴的边旋转成的

4、曲面叫做圆柱的侧面,无论旋转到什么位置,这条边都叫做侧面的母线.两个底面间的距离叫做圆柱的高(图9−63).圆柱用表示轴的字母表示.如图9−63的圆柱表示为圆柱.图9-64【想一想】圆柱两个底面圆心连线的长度是否等于圆柱的高?为什么?【新知识】观察圆柱(图9−64),可以得到圆柱的下列性质(证明略):(1)圆柱的两个底面是半径相等的圆,且互相平行;(2)圆柱的母线平行且相等,并且等于圆柱的高;专业资料...供学习...参考...下载Word文档...范文范例...内容齐全(3)平行于底面的截面1截面是指用平面截一个几何体,所得到的面.是与底面半径相等的圆;(4)轴截面2轴截面是经过轴的截面.是

5、宽为底面的直径、长为圆柱的高的矩形.圆柱的侧面积、全面积(表面积)、及体积的计算公式如下:(9.7)(9.8)(9.9)其中r为底面半径,h为圆柱的高.*巩固知识典型例题【知识巩固】例3已知圆柱的底面半径为1cm,体积为cm3,求圆柱的高与全面积.解由于底面半径为1cm,所以解得圆柱的高为(cm).所以圆锥的全面积为(cm2).*创设情境兴趣导入【实验】以直角三角形的一条直角边为旋转轴进行旋转,观察旋转一周所形成的几何体(如图9−65).图9−65*动脑思考探索新知【新知识】以直角三角形的一条直角边为旋转轴旋转一周,其余各边旋转而形成的曲面(或平面)所围成的几何体叫做圆锥(如图9−65).旋转

6、轴叫做圆锥的轴.另一条直角边旋转而成的圆面叫做底面.斜边旋转而成的曲面叫做侧面,无论旋转到什么位置,斜边都叫做侧面的母线.母线与轴的交点叫做顶点.顶点到底面的距离叫做圆锥的高.圆锥用表示轴的字母表示.如图9−65所示的圆锥表示为圆锥SO.【想一想】圆锥的顶点与底面圆心的连线的长度是否等于圆锥的高?为什么?【新知识】专业资料...供学习...参考...下载Word文档...范文范例...内容齐全观察圆锥AO(如图9−66),可以得到圆锥的下列性质(证明略):(1)平行于底面的截面是圆;(2)顶点与底面圆周上任意一点的距离都相等,且等于母线的长度;(3)轴截面为等腰三角形,其底边上的高等于圆锥的高

7、.圆锥的侧面积、全面积(表面积)及体积的计算公式如下:(9.10)(9.11)(9.12)其中r为底面半径,l为母线长,h圆锥的高.*巩固知识典型例题【知识巩固】例4已知圆锥的母线的长为2cm,圆锥的高为1cm,求该圆锥的体积.解由图9−67知(cm)故圆锥的体积为图9−67(cm3).*创设情境兴趣导入【实验】半圆以其直径所在的直线为旋转轴进行旋转,观察旋转一周所形成的几何体(如图9−68).图

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《柱、锥、球与简单组合体(2).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Word文档...范文范例...内容齐全9.5柱、锥、球及其简单组合体(二)天长市职教中心王启荣【教学目标】知识目标:了解圆柱、圆锥、球的结构特征及表面积与体积的计算能力目标:(1)能看懂圆柱、圆锥、球的直观图;(2)会计算圆柱、圆锥、球的表面积、体积;(3)培养学生的空间想象能力计算技能和计算工具使用技能.情感目标:(1)参与数学实验,认知圆柱、圆锥、球的模型与直观图,培养数学直觉,感受科学思维.(2)关注生活中的数学模型,体会数学知识的应用.(3)经历合作学习的过程,尝试探究与讨论,树立团队合作意识.【教学重点】圆柱、圆锥、球的结构特征及相关的计算.【教学难点】简单组合体的结构特征及其面积

2、、体积的计算.【教学设计】圆柱、圆锥、球都是旋转体,它们分别由矩形、直角三角形、半圆绕轴旋转而成.这部分内容的教学要结合实物模型或教学课件,讲清形成过程及各种量的关系,抓住旋转过程中的不变量是计算有关问题的关键.圆柱两个底面圆心连线的长度等于圆柱的高.圆锥的顶点与底面圆心的连线的长度等于圆锥的高.例3是有关圆柱计算的题目,例4是求圆锥体积的题目,例5是求球的表面积与体积的题目,根据公式计算时不要出错.要提醒学生注意区别圆柱与圆柱面、圆锥与圆锥面、球与球面等概念.用平面去截球,截面是圆面,并且球心和截面圆心的连线垂直于截面.要注意球的大圆与小圆的区别.球面上两点的球面距离是指经过这两点的大圆在这

3、两点间的一段劣弧的长度.例6、例7专业资料...供学习...参考...下载Word文档...范文范例...内容齐全是有关简单组合体求积的题目,关键是要弄清组合体的结构,然后根据相应公式进行计算.【教学备品】教学课件.【课时安排】5课时【教学过程】教学过程*揭示课题9.5柱、锥、球及其简单组合体(二)【实验】以矩形的一边所在直线为旋转轴旋转,观察其余各边旋转一周所形成的几何体(如图9−63).图9−63*动脑思考探索新知【新知识】以矩形的一边所在直线为旋转轴,其余各边旋转形成的曲面(或平面)所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转形成的圆面叫做圆柱的底面.平行于轴的边旋转成的

4、曲面叫做圆柱的侧面,无论旋转到什么位置,这条边都叫做侧面的母线.两个底面间的距离叫做圆柱的高(图9−63).圆柱用表示轴的字母表示.如图9−63的圆柱表示为圆柱.图9-64【想一想】圆柱两个底面圆心连线的长度是否等于圆柱的高?为什么?【新知识】观察圆柱(图9−64),可以得到圆柱的下列性质(证明略):(1)圆柱的两个底面是半径相等的圆,且互相平行;(2)圆柱的母线平行且相等,并且等于圆柱的高;专业资料...供学习...参考...下载Word文档...范文范例...内容齐全(3)平行于底面的截面1截面是指用平面截一个几何体,所得到的面.是与底面半径相等的圆;(4)轴截面2轴截面是经过轴的截面.是

5、宽为底面的直径、长为圆柱的高的矩形.圆柱的侧面积、全面积(表面积)、及体积的计算公式如下:(9.7)(9.8)(9.9)其中r为底面半径,h为圆柱的高.*巩固知识典型例题【知识巩固】例3已知圆柱的底面半径为1cm,体积为cm3,求圆柱的高与全面积.解由于底面半径为1cm,所以解得圆柱的高为(cm).所以圆锥的全面积为(cm2).*创设情境兴趣导入【实验】以直角三角形的一条直角边为旋转轴进行旋转,观察旋转一周所形成的几何体(如图9−65).图9−65*动脑思考探索新知【新知识】以直角三角形的一条直角边为旋转轴旋转一周,其余各边旋转而形成的曲面(或平面)所围成的几何体叫做圆锥(如图9−65).旋转

6、轴叫做圆锥的轴.另一条直角边旋转而成的圆面叫做底面.斜边旋转而成的曲面叫做侧面,无论旋转到什么位置,斜边都叫做侧面的母线.母线与轴的交点叫做顶点.顶点到底面的距离叫做圆锥的高.圆锥用表示轴的字母表示.如图9−65所示的圆锥表示为圆锥SO.【想一想】圆锥的顶点与底面圆心的连线的长度是否等于圆锥的高?为什么?【新知识】专业资料...供学习...参考...下载Word文档...范文范例...内容齐全观察圆锥AO(如图9−66),可以得到圆锥的下列性质(证明略):(1)平行于底面的截面是圆;(2)顶点与底面圆周上任意一点的距离都相等,且等于母线的长度;(3)轴截面为等腰三角形,其底边上的高等于圆锥的高

7、.圆锥的侧面积、全面积(表面积)及体积的计算公式如下:(9.10)(9.11)(9.12)其中r为底面半径,l为母线长,h圆锥的高.*巩固知识典型例题【知识巩固】例4已知圆锥的母线的长为2cm,圆锥的高为1cm,求该圆锥的体积.解由图9−67知(cm)故圆锥的体积为图9−67(cm3).*创设情境兴趣导入【实验】半圆以其直径所在的直线为旋转轴进行旋转,观察旋转一周所形成的几何体(如图9−68).图

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭