一元二次方程竞赛辅导训练题(2)

一元二次方程竞赛辅导训练题(2)

ID:5858552

大小:435.50 KB

页数:9页

时间:2017-12-26

一元二次方程竞赛辅导训练题(2)_第1页
一元二次方程竞赛辅导训练题(2)_第2页
一元二次方程竞赛辅导训练题(2)_第3页
一元二次方程竞赛辅导训练题(2)_第4页
一元二次方程竞赛辅导训练题(2)_第5页
资源描述:

《一元二次方程竞赛辅导训练题(2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一元二次方程竞赛辅导训练题(2)一.选择题1.方程是实数)有两个实根、,且0<<1,1<<2,那么k的取值范围是()(A)3<k<4;(B)-2<k<-1;(C)3<k<4或-2<k<-1(D)无解。2.方程的解是()(A);(B);(C)或;(D)3.若是一元二次方程的根,则判别式与平方式的关系是()(A)>(B)=(C)<;(D)不确定.4.如果方程的三根可以作为一个三角形的三边之长,那么实数m的取值范围是()(A);(B);(C);(D)5.设是二次方程的两个根,那么,的值等于()(A)(B)8;(C)6;(D)0.6.已知实数,且满足,.则的值为().(A)23(B)(C)(D)7

2、.如果x和y是非零实数,使得和,那么x+y等于().(A)3(B)(C)(D)8.已知b2-4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为()(A)(B)(C)(D)9.在中,斜边AB=5,而直角边BC,AC之长是一元二次方程的两根,则m的值是()A、4B、-1C、4或-1D、-4或1二.填空题10.方程,有两个整数根,则11.已知关于x的一元二次方程没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,.12.若方程有四个非零实根,且它们在数轴上对应的四个点等距排列,则=___________

3、_.13.知m,n是有理数,并且方程有一个根是,那么m+n的值是______。14.已知且,则=________。15.设m是整数,且方程的两根都大于而小于,则m=____________.16.已知实数a、b、x、y满足,,则.17.实数x、y、z满足x+y+z=5,xy+yz+zx=3,则z的最大值是.18.已知a为实数,且使关于x的二次方程有实根,该方程的根x所能取到的最大值是。三.解答题19.求所有正实数a,使得方程仅有整数根。20.已知:a,b,c三数满足方程组,试求方程bx2+cx-a=0的根。21.已知a,b是实数,关于x,y的方程组有整数解,求a,b满足的关系式.22.设,

4、,为互不相等的实数,且满足关系式①及,②求的取值范围.附一元二次方程竞赛辅导训练题(2)答案1.解:记由2.(D)设是方程的解,则—也是方程的解,排除(A)、(B);(D)的两值必是方程的解,否则方程的解也不是(C).将代入方程,左边≠0,排除(C).3.(B)设是方程的根,则.所以.4.(C)因为有两根,故≥0,得m≤1.原方程的三根为,,.显然,x2≤x1≤x3.注意到,由此得.5.(D)∵x1,x2是二次方程的两个根,∴,,即,.由根与系数的关系知,从而有.6.答:选(B)∵a、b是关于x的方程的两个根,整理此方程,得,∵,∴,.故a、b均为负数.因此7.答:选(D)将代入,得.(1

5、)当x>0时,,方程无实根;(2)当x<0时,,得方程解得,正根舍去,从而.于是.故.因此,结论(D)是在正确的.8.B9.设方程的根为,依题意=即解得m=4或-1但>0,2m-1>0所以m>0故m=4选A10.8.原方程整理为设x1,x2为方程的两个整数根,由x1+x2=a+8,知a为整数,因此,x-a和x-8都是整数。故由原方程知x-a=x-8(=±1)∴所以a=811.6  设甲将a看为a′,由韦达定理得    由于一次项系数b的符号不改变判别式的值,因此,乙只能是看错a或c的符号.于是a’    由①②得   12.设,原方程变为.设此方程有根,则原方程的四个根为,.由于它们在数轴

6、上对应的四个点等距排列,∴,故.由韦达定理,得,,于是,∴.13.3因为m、n为有理数,方程一根,那么另一个根为,由韦达定理。得m=4,n=-1,∴m+n=314解.:,即,,,,,15.解:这是一个二次方程的区间根问题,可根据二次函数图象的特点建立关于m的不等式,先求出m的取值范围,再由m是整数确定m的根.设f(x)=3x2+mx-2,由二次函数的图象,得解得∵m是整数,∴只有m=4.16.答:解:由,得,∵,∴.因而,17.答:解:∵,,∴x、y是关于t的一元二次方程的两实根.∵,即,.∴,当时,.故z的最大值为.18.a为实数,当时,关于a的二次方程有实根,于是。当a=0时,x=0综

7、上,19.设两整数根为x,y(x≤y)∴x=5时,a=25时,y=20时;x=6时,a=18时,y=12;x=7时,a不是整数,x=8时;a=16,y=8;于是a=25或18或16均为所求。20.由方程组得:a、b是方程x2-8x+c2-c+48=0的两根△=-4(c-)2≥0,c=4a=b=4所以原方程为x2+x-1=0x1=,x2=21.解:将代入,消去a、b,得,.若x+1=0,即,则上式左边为0,右边为不可能.所

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。