欢迎来到天天文库
浏览记录
ID:58552316
大小:1.10 MB
页数:23页
时间:2020-09-05
《人教版勾股定理复习课件ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、勾股定理复习课勾股定理:如果直角三角形的两直角边分 别为a,b,斜边为c,则有ABCabc∟abc∟abc∟abc∟abc大正方形的面积可以表示为——————————又可以表示为:———————∟abcc²(b-a)²+1/2ab4a2+b2=c2ABCA的面积+B的面积=C的面积DABC一、分类思想2.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC∟D∟DABC1.已知:直角三角形的三边长分别是3,4,X,则X2=25或7ABC1017817108规律
2、分类思想1.直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。二、方程思想1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?ABC5米(X+1)米x米2、我国古代数学著作《九章算术》中的一个问题,原文是:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,水深、葭长各几何?请用学过的数学知识回答这个问题。5X+1XCBA3、折叠矩形ABCD的一边AD,点D落在BC边上的点F
3、处,已知AB=8CM,BC=10CM,求1.CF2.EC.ABCDEF810106X8-X48-X4、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.ACDBE第8题图Dx6x8-x46方程思想直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。规律三、展开思想小明家住在18层的高楼,一天,他与妈妈去买竹竿。买最长的吧!快点回家,好用它凉衣服。糟糕,太长了,放不进去。如果电梯的长、宽、高分别是1.5米
4、、1.5米、2.2米,那么,能放入电梯内的竹竿的最大长度大约是多少米?你能估计出小明买的竹竿至少是多少米吗?1.5米1.5米2.2米1.5米1.5米xx2.2米ABCX2=1.52+1.52=4.5AB2=2.22+X2=9.34AB≈3米如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是多少?2032AB20232323ABC如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如
5、果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?1020BAC1551020B5B51020ACEFE1020ACFAECB2015105如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是()A.20cmB.10cmC.14cmD.无法确定BB8OA2蛋糕ACB8周长的一半61.几何体的表面路径最短的问题,一般展开表面成平面。2.利用两点之间线段最短,及勾股定理求解。展开思想规律请各小组讨论一下,举一个生活中的实例,并运用勾股定理来解决它。再见
此文档下载收益归作者所有