高中-解析几何-常用公式.docx

高中-解析几何-常用公式.docx

ID:57615980

大小:20.30 KB

页数:11页

时间:2020-08-29

高中-解析几何-常用公式.docx_第1页
高中-解析几何-常用公式.docx_第2页
高中-解析几何-常用公式.docx_第3页
高中-解析几何-常用公式.docx_第4页
高中-解析几何-常用公式.docx_第5页
资源描述:

《高中-解析几何-常用公式.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、解析几何1.两直线分别为A1x+B1y+C1=0和A2x+B2y+C2=0的关系平行不重合A1B2=A2B1且C1B2≠C2B1相交:A1B2≠A2B1垂直:B1B2≠0时,A1A2=-B1B2B1=0,A2=0或B2=0,A1=0重合:A1B2=A2B1且C1B2=C2B1://3.三角函数公式★诱导公式★常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意

2、角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的

3、三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α

4、)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。[编辑本段]诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上

5、把α看成锐角时原函数值的符号。(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。#各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”

6、.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦#还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦...........+............+............—............—........余弦...........+............—............—

7、............+........正切...........+............—............+............—........余切...........+............—............+............—........其他三角函数知识:[编辑本段]同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=csc

8、α/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)[编辑本段]同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。