欢迎来到天天文库
浏览记录
ID:56744594
大小:2.46 MB
页数:16页
时间:2020-07-07
《高中数学 2.1.1 合情推理教案 新人教A版选修1-2.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.1.1 合情推理(教师用书独具)●三维目标1.知识与技能(1)结合已学过的数学实例,了解归纳推理与类比推理的含义.(2)能利用归纳和类比的方法进行简单的推理.(3)体会并认识归纳推理、类比推理在数学发现中的作用.2.过程与方法让学生感受数学知识与实际生活的普遍联系,通过让学生积极参与,亲身经历归纳、类比推理定义的获得过程,培养学生归纳推理、类比推理的思想.3.情感、态度与价值观通过本节学习正确认识合情推理在数学中的重要作用,养成认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知
2、识.●重点难点重点:归纳推理与类比推理概念的理解,归纳推理与类比推理思想方法的掌握.难点:归纳推理、类比推理的应用.通过举例分析归纳推理与类比推理的异同,让学生对两个概念有较深刻的理解,突出本节重点,通过例题讲解总结归纳推理与类比推理的应用方法及解题规律,强化训练有关题型,化解难点.(教师用书独具)●教学建议1.关于归纳推理的教学教学时要从具体的事例出发,让学生参与猜测,引导学生归纳,激发学生学习的兴趣,总结归纳推理的过程,让学生自己去发现归纳推理的应用方法与技巧.通过适量的练习使学生掌握观察、猜测、归纳、论证
3、各环节的规律方法,并能灵活应用.2.关于类比推理的教学类比推理的难度要大于归纳推理,教学时应该借助实例帮助学生学会分析类比对象之间的异同点,学会由已知对象的性质、特征联想类比对象的相应性质特征.通过适量练习让学生逐步掌握类比的技巧方法.引导学生总结并掌握常见的类比结论.●教学流程创设问题情境,引出问题,猜想数列的项及三角形内角和,引入归纳推理的概念.创设问题情境,引出问题,由三角形的性质,推测空间四面体的性质,从而引出类比推理的概念.创设问题情境,通过归纳推理、类比推理的概念,引出合情推理的概念.引导学生
4、分析例题1,找出图案的个数变化,猜想出排列规律,从而计算出第六个图案的个数.总结方法,完成变式训练.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.讲解例题3,指出解题误区及如何避免,总结合情推理的应用类型解题方法.引导学生分析例题2,指出相对应的类比元素,三边对四面,高对高推测结论,并给出证明,总结类比方法,引导学生完成互动探究.课标解读1.了解合情推理的含义,正确理解归纳推理与类比推理.(重点)2.能用归纳和类比进行简单
5、的推理.(难点)3.了解合情推理在数学发现中的作用.归纳推理【问题导思】 1.数列{an}中,a1=,a2=,a3=,a4=.你能猜出a5的值吗?【提示】 a5=.2.直角三角形、等腰三角形、等边三角形的内角和都是180°,你能猜想出什么结论?【提示】 所有三角形内角和都是180°.定义特征由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理归纳推理是由部分到整体、由个别到一般的推理类比推理【问题导思】 已知三角形的如下性质:(1)三角
6、形的两边之和大于第三边;(2)三角形的面积等于高与底乘积的.1.试根据上述三角形的性质推测空间四面体的性质.【提示】 (1)四面体任意三个面的面积之和大于第四个面的面积.(2)四面体的体积等于底面积与高乘积的.2.以上两个推理有什么共同特点?【提示】 都是根据三角形的特征,类比四面体相关元素得出结论的.定义特征由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理类比推理是由特殊到特殊的推理合情推理【问题导思】 1.归纳推理与类比推理有没有共同点?【提示】 二者
7、都是从具体事实出发,推断猜想新的结论.2.归纳推理与类比推理得出的结论一定正确吗?【提示】 不一定正确. 归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.归纳推理 有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )图2-1-1A.26 B.31C.32D.36【思路探究】 本题中图形的变化比较简单,可有两种思路:第一种,直接查个数,找到变化规律后再猜想;第二种,
8、看图形的排列规律,每相邻的两块无纹正六边形之间有一块“公共”的有菱形纹正六边形.【自主解答】 法一 有菱形纹的正六边形个数如下表:图案123…个数61116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.法二 由图案的排列规律可知,除第一块无纹正六边形需6个有菱形纹的正六边形
此文档下载收益归作者所有