欢迎来到天天文库
浏览记录
ID:56733666
大小:2.14 MB
页数:18页
时间:2020-07-06
《专题05 平面向量-2019届浙江省高考数学复习必备高三优质考卷分项解析 Word版含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一.基础题组1.【浙江省“七彩阳光”联盟2019届高三期初联考】均为单位向量,且它们的夹角为,设满足,则的最小值为()A.B.C.D.【答案】C【解析】【分析】依据题意求出的轨迹,然后求出的最小值【详解】【点睛】本题较为综合,在解答向量问题时将其转化为轨迹问题,求得满足题意的图像,要求最小值即算得圆心到直线的距离减去半径,本题需要转化,有一定难度。2.【浙江省杭州市第二中学2018届高三6月热身考】已知点为单位圆上的动点,点为坐标原点,点在直线上,则的最小值为__________.【答案】2.【解析】分析:题设的都是动点,故可设,,从而可表示关于的
2、函数,求出函数的最小值即可.点睛:向量的数量积的计算,有四种途径:(1)利用定义求解,此时需要知道向量的模和向量的夹角;(2)利用坐标来求,把数量积的计算归结坐标的运算,必要时需建立直角坐标系;(3)利用基底向量来计算,也就是用基底向量来表示未知的向量,从而未知向量数量积的计算可归结为基底向量的数量积的计算;(4)靠边靠角,也就是利用向量的线性运算,把未知向量的数量积转化到题设中的角或边对应的向量.3.【浙江省教育绿色评价联盟2018届高三5月适应性考试】已知,,则的最大值为______,最小值为______.【答案】6【解析】分析:可设出,画出向
3、量,由向量数量积的定义和点与圆的距离最值,即可得到所求最值.详解:点睛:本题主要考查向量的几何运算及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).4.【浙江省教育绿色评价联盟2018届高三5月适应性考试】如图,在△中,点是线段上两个动点,且,则的最小值为A.B.C.D.【答案】D【解析】分析:设,由共线可得,由此,利用基本不等式可得结果.点睛:利用基本不等式求最值时,一定要正
4、确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).5.【浙江省杭州市第二中学2018届高三仿真考】如图,在边长为1的正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧(在正方形内,包括边界点)上的任意一点,则的取值范围是________;若向量,则的最小值为_________.【答案】【解析】分析:首先根据图形的特征,建立适当的平面直角坐
5、标系,根据正方形的边长,设出点P的坐标,利用终点坐标减去起点坐标,得到对应向量的坐标利用向量数量积坐标公式求得结果;再者就是利用向量相等得到坐标的关系,将其值转化为对应自变量的函数关系,结合自变量的取值范围,求得最小值.详解:如图,以A为原点,以AB所在直线为x轴,建立平面直角坐标系,结合题意,可知,所以,因为,所以,所以,所以的范围是;点睛:该题考查的是有关向量的问题,在解题的过程中,注意建立相应的坐标系,将向量坐标化,从而容易求解,再者就是利用向量相等的条件是坐标相等,得到关于的关系式,利用三角式子的特征求得相应的最值.6.【浙江省杭州市学军中
6、学2018年5月高三模拟】已知平面向量,满足,若,则的最小值为__________.【答案】.【解析】分析:先建立直角坐标系,设A(x,y),B(5,0),C(0,5),再转化为求的最小值,再转化为求
7、PD
8、+
9、PA
10、的最小值.点睛:(1)本题主要考查坐标法的运用,考查对称的思想方法,意在考查学生对这些基础知识的掌握能力和分析转化能力.(2)本题有三个难点,其一是要想到建立直角坐标系,其二是转化为求的最小值,其三转化为求
11、PD
12、+
13、PA
14、的最小值.7.【2018年浙江省普通高等学校全国招生统一考试模拟】已知向量满足,则的取值范围是_________
15、_.【答案】【解析】分析:根据绝对值三角不等式即可求出.详解:∵∴∴,即;,即.∴的取值范围是故答案为.点睛:本题考查向量的模,解答本题的关键是利用绝对值三角不等式,即.8.【2018年浙江省普通高等学校全国招生统一考试模拟】在△中,角所对的边分别为,已知,点满足,则__________;__________.【答案】8..【解析】分析:由已知利用余弦定理即可求得的值,进而求得的值,利用余弦定理可求的值.详解:如图,,,.点睛:本题主要考查余弦定理解三角形.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解
16、与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.9.【腾远2018年普通高等学校招生
此文档下载收益归作者所有