中考数学压轴题集训.doc

中考数学压轴题集训.doc

ID:56722924

大小:3.62 MB

页数:19页

时间:2020-07-06

中考数学压轴题集训.doc_第1页
中考数学压轴题集训.doc_第2页
中考数学压轴题集训.doc_第3页
中考数学压轴题集训.doc_第4页
中考数学压轴题集训.doc_第5页
资源描述:

《中考数学压轴题集训.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、中考数学压轴题集训(八个类型)一.面积与动点1.(重庆市綦江县)如图,已知抛物线y=a(x-1)2+(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于轴的直线交射线OM于点C,B在轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中

2、一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.解:(1)把A(-2,0)代入y=a(x-1)2+,得0=a(-2-1)2+.∴a=-·································1分∴该抛物线的解析式为y=-(x-1)2+即y=-x2+x+.·······················3分(2)设点D的坐标为(xD,yD),由于D为抛物线的顶点∴xD=-=1,yD=-×12+×1+=.∴点D的坐标为(1,).如图,过点D作DN

3、⊥x轴于N,则DN=,AN=3,∴AD==6.∴∠DAO=60°·······························4分∵OM∥AD①当AD=OP时,四边形DAOP为平行四边形.∴OP=6∴t=6(s)························5分②当DP⊥OM时,四边形DAOP为直角梯形.过点O作OE⊥AD轴于E.在Rt△AOE中,∵AO=2,∠EAO=60°,∴AE=1.(注:也可通过Rt△AOE∽Rt△AND求出AE=1)∵四边形DEOP为矩形,∴OP=DE=6-1=5.∴t=5(s)·····················

4、···········6分③当PD=OA时,四边形DAOP为等腰梯形,此时OP=AD-2AE=6-2=4.∴t=4(s)综上所述,当t=6s、5s、4s时,四边形DAOP分别为平行四边形、直角梯形、等腰梯形.······································7分(3)∵∠DAO=60°,OM∥AD,∴∠COB=60°.又∵OC=OB,∴△COB是等边三角形,∴OB=OC=AD=6.∵BQ=2t,∴OQ=6-2t(0<t<3)过点P作PF⊥x轴于F,则PF=t.·······························8

5、分∴S四边形BCPQ=S△COB-S△POQ=×6×-×(6-2t)×t=(t-)2+···························9分∴当t=(s)时,S四边形BCPQ的最小值为.················10分此时OQ=6-2t=6-2×=3,OP=,OF=,∴QF=3-=,PF=.∴PQ===·················12分二.几何图形与变换2.(辽宁省铁岭市)如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作

6、PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线解析式;(2)求S与t的函数关系式;(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.【解析】(1)设抛物线解析式为y=ax2+bx(a≠0),将A.B点坐标代入得出:,解得:,故经过O、A、B三点的抛物线解析式为:y=-x2+x.(2)①当0<t≤2时,重叠部分为△OPQ,过点A作AD⊥x轴于点D,如图1.在Rt△A

7、OD中,AD=OD=1,∠AOD=45°.在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°.∴OQ=PQ=t.∴S=S△OPQ=OQ•PQ=×t×t=t2(0<t≤2);②当2<t≤3时,设PQ交AB于点E,重叠部分为梯形AOPE,作EF⊥x轴于点F,如图2.∵∠OPQ=∠QOP=45°∴四边形AOPE是等腰梯形∴AE=DF=t-2.∴S=S梯形AOPE=(AE+OP)•AD=(t-2+t)×1=t-1(2<t≤3);③当3<t<4时,设PQ交AB于点E,交BC于点F,重叠部分为五边形AOCFE,如图3.∵B(3,1),OP=t,∴PC=CF

8、=t-3.∵△PFC和△BEF都是等腰直角三角形∴BE=BF=1-(t-3)=4-t∴S=S五边形AOCFE=S梯形OAB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。